Preparation of FePO4x2H2O from LiFePO4 mixed with LiNixCoyMn1–x–yO2 waste material

Main Article Content

Honghui Tang
Yanchao Qiao
Xi Dai
Feng Tan
https://orcid.org/0000-0001-7055-9756
Qiang Li

Abstract

A method for preparing battery grade FePO4×2H2O from LiFePO4 and LiNixCoyMn1-x-yO2 mixed waste is proposed. The optimum leaching con­ditions included: temperature of 50 °C, 3:1 liquid–solid mass ratio, 3.6 HCl/FePO4×2H2O mole ratio, 0.75 H2O2/FePO4×2H2O mole ratio, and 2 h reaction time. The solution obtained from the leaching waste material was diluted to a 1.0 M Fe concentration, then transferred to an 1 L beaker, where temperature, pH, complexing agent, ammonia addition rate and feeding mode were studied in order to determine their effects on the precipitation, particle size and mor­pho­logy of FePO4×2H2O. High precipitation rate of Fe with low percentages of Al, Ni, Co, Mn in the FePO4×2H2O is achievable when preci­pit­ation is per­formed at a temperature of 85 °C, pH of 2.0, and 20 g L-1 com­plexing agent. Furthermore, it was observed that a slow addition of ammonia and a flow feed­ing method contributed to the production of FePO4×2H2O, with small particle sizes and a flake morphology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Tang, Y. Qiao, X. Dai, F. Tan, and Q. Li, “Preparation of FePO4x2H2O from LiFePO4 mixed with LiNixCoyMn1–x–yO2 waste material”, J. Serb. Chem. Soc., vol. 85, no. 5, pp. 671–685, May 2020.
Section
Materials

References

C. W. Sun, R. Shreyas, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133 (2011) 2132 (https://doi.org/10.1021/ja1110464)

S. P. Wang, H. X. Yang, L. J. Feng, S. M. Sun, J. X. Guo, Y. Z. Yang, H. Y. Wei, J. Power Sources 233 (2013) 43 (https://doi.org/10.1016/j.jpowsour.2013.01.124)

Y. X. Gu, W. M. Liu, W. Lei, G. C. Li, Y. Yu, Crystengcomm 15 (2013) 4865 (http://doi.org/10.1039/C3CE00072A)

Q. Wang, S. X. Deng, H. Wang, M. Xie, J. B. Liu, H. Yan, J. Alloys Compd. 553 (2013) 69 (https://doi.org/10.1016/j.jallcom.2012.11.041)

F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 23 (2011) 1695 (https://doi.org/10.1002/adma.201003587)

B. Scrosati, J. Garche, J. Power Sources 195 (2009) 2419 (https://doi.org/10.1016/j.jpowsour.2009.11.048)

B. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 4 (2011) 3287 (https://doi.org/10.1039/C1EE01388B)

Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Metals 162 (2012) 1315 (https://doi.org/10.1016/j.synthmet.2012.04.025)

J. J. Wang, X. L. Sun, Energy Environ. Sci. 5 (2012) 5163 (https://doi.org/10.1039/C1EE01263K)

X. Wang, G. Gaustad, C. W. Babbitt, K. Richa, Resour. Conserv. Recycl. 83 (2014) 53 (https://doi.org/10.1016/j.resconrec.2013.11.009)

J. Chen, Y. C. Zou, F. Zhang, Y. C. Zhang, F. F. Guo, G. D. Li, J. Alloys Compd. 563 (2013) 264 (https://doi.org/10.1016/j.jallcom.2013.02.131)

G. Q. Cai, K. Y. Fung, K. M. Ng, C. Wibowo, Ind. Eng. Chem. Res. 53 (2014) 18245 (https://doi.org/10.1021/ie5025326)

L. Han, D. L. He, A. J. Liu, D. M. Ma, Chin. J. Power Sources 38 (2014) 548 (https://doi.org/CNKI:SUN:DYJS.0.2014-03-051)

S. Barusseau, B. Beder, M. Broussely, F. Perton, J. Power Sources 54 (1995) 296 (https://doi.org/10.1016/0378-7753(94)02087-J)

P. G. Bruce, S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed. 47 (2008) 2930 (https://doi.org/10.1002/anie.200702505)

X. T. Jiang, P. Wang, L. H. Li, J. Yu, Y. X. Yin, F. Hou, Mater. Sci. Forum 943 (2019) 141 (https://doi.org/10.4028/www.scientific.net/MSF.943.141)

N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy. H. Gaulous, G. Mulder, P. V. D. Bossche, T. Coosemans, J. V. Mierlo, Appl. Energy 113 (2013) 1575 (https://doi.org/10.1016/j.apenergy.2013.09.003)

L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 4 (2010) 269 (https://doi.org/10.1039/c0ee00029a)

X. L. Li, J. Zhang, D. W. Song, J. S. Song, L.Q. Zhang, J. Power Sources 345 (2017) 78 (https://doi.org/10.1016/j.jpowsour.2017.01.118)

H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa, Colloids Surfaces, A 204 (2002) 251 (https://doi.org/10.1016/S0927-7757(02)00005-5)

N. K. Mal, A. Bhaumik, M. Matsukata, M Fujiwara. Ind. Eng. Chem. Res. 45 (2006) 7748 (https://doi.org/10.1021/ie060609u)

D. C. Bian, Y. H. Sun, S. Li, Y. Tian, Z. H. Yang, X. M. Fan, W. X. Zhang, Electrochim. Acta 190 (2015) 134 (https://doi.org/10.1016/j.electacta.2015.12.114)

Y. X. Yang, X. H. Zheng, H. B. Cao, C. L. Zhao, X. Lin, P. G. Ning, Y. Zhang, W. Jin, Z. Sun, ACS Sustain. Chem. Eng. 5 (2017) 9972 (https://doi.org/10.1021/acssuschemeng.7b01914)

B. Dong, G. Li, X. G. Yang, L. M. Chen, G. Z. Chen, Ultrason. Sonochem. 42 (2018) 452 (https://doi.org/10.1016/j.ultsonch.2017.12.008)

W. P. He, L. P. Xue, B. Gorczyca, J. Nan, Z. Shi, Sep. Purif. Technol. 190 (2018) 228 (https://doi.org/10.1016/j.seppur.2017.08.063)

A. Tamburini, G. Gagliano, G. Micale, A. Brucato, F. Scargiali, M. Ciofalo, Chem. Eng. Sci. 192 (2018) 161 (https://doi.org/10.1016/j.ces.2018.07.023)

D. M. Zheng, H. Z. Pan, L. P. Wu, J. C. Chen, J. H. Peng, Chin. J. Power Sources 39 (2015) 58 (https://doi.org/10.3969/j.issn.1002-087X.2015.01.017)

Z. M. Ma, R. G. Xiao, X. Liao, X. Ke, Mater. Rev. 32 (2018) 3325 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006).