Excited electronic states’ properties of guanine quartet complexes with alkali metal cations

Branislav Milovanović, Milena Petković, Mihajlo Etinski

Abstract


G-quartets are supra-molecular structures which consist of four guanine molecules connected by eight hydrogen bonds. They are additionally stabilized by metal cations. In this contribution we study excited states of G-quartet and its complexes with lithium, sodium and potassium by employing time-dependent density functional theory. Our findings indicate that vertical excitations from the optimized ground state involve transitions from several bases, whereas excitations from the optimized lowest excited state include transitions from one base. The charge-transfer character of these states was analyzed. We show that the cations are able to modify fluorescence spectra maxima positions of the complexes.


Keywords


density functional theory; G-quadruplex; fluorescence

Full Text:

PDF (1,843 kB)

References


Y. P. Yurenko, J. Novotny, V. Sklenávr, R. Marek, Phys. Chem. Chem. Phys. 16 (2014) 2072 (https://dx.doi.org/10.1039/C3CP53875C)

J. Gu, J. Leszczynski, J. Phys. Chem. A 106 (2002) 529 (https://dx.doi.org/10.1021/jp012739g)

F. Zaccaria, G. Paragi, C. Fonseca Guerra, Phys. Chem. Chem. Phys. 18 (2016) 20895 (https://dx.doi.org/10.1039/C6CP01030J)

M. T. Rodgers, P. B. Armentrout, J. Am. Chem. Soc. 122 (2000) 8548–8558 (https://dx.doi.org/10.1021/ja001638d)

F. Zaccaria, C. Fonseca Guerra, Chem. - A Eur. J. 24 (2018) 16315 (https://dx.doi.org/10.1002/chem.201803530)

G. Louit, A. Hocquet, M. Ghomi, M. Meyer, J. Sühnel, PhysChemComm 6 (2003) 1 (https://dx.doi.org/10.1039/B210911E)

J. Gu, J. Leszczynski, M. Bansal, Chem. Phys. Lett. 311 (1999) 209 (https://dx.doi.org/10.1016/S0009-2614(99)00821-0)

W. S. Ross, C. C. Hardin, J. Am. Chem. Soc. 116 (1994) 6070 (https://dx.doi.org/10.1021/ja00093a003)

F. Rosu, V. Gabelica, E. De Pauw, R. Antoine, M. Broyer, P. Dugourd, J. Phys. Chem. A 116 (2012) 5383 (https://dx.doi.org/10.1021/jp302468x)

L. Martinez-Fernández, A. Banyasz, D. Markovitsi, R. Improta, Chem. - A Eur. J. 24 (2018) 15185 (https://dx.doi.org/10.1002/chem.201803222)

M. E. Sherlock, C. A. Rumble, C. K. Kwok, J. Breffke, M. Maroncelli, P. C. Bevilacqua, J. Phys. Chem. B 120 (2016) 5146 (https://dx.doi.org/10.1021/acs.jpcb.6b03790)

Y. Hua, P. Changenet-Barret, R. Improta, I. Vayá, T. Gustavsson, A. B. Kotlyar, D. Zikich, P. Šket, J. Plavec, D. Markovitsi, J. Phys. Chem. C 116 (2012) 14682 (https://dx.doi.org/10.1021/jp303651e)

A. Banyasz, L. Martinez-Fernandez, C. Balty, M. Perron, T. Douki, R. Improta, D. Markovitsi, J. Am. Chem. Soc. 139 (2017) 10561 (https://dx.doi.org/10.1021/jacs.7b05931)

R. Improta, Chem. Eur. J. 20 (2014) 8106–8115 (https://dx.doi.org/10.1002/chem.201400065)

C. J. Lech, A. T. Phan, M.-E. Michel-Beyerle, A. A. Voityuk, J. Phys. Chem. B 119 (2015) 3697 (https://dx.doi.org/10.1021/jp512767j)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://dx.doi.org/10.1007/s00214-007-0401-8

T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://dx.doi.org/10.1016/j.cplett.2004.06.011)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://dx.doi.org/10.1063/1.464913)

D. Jacquemin, E. A. Perpete, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2071 (https://dx.doi.org/10.1021/ct100119e)

G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193 (https://dx.doi.org/10.1063/1.455064)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639 (https://dx.doi.org/10.1063/1.438980)

G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081 (https://dx.doi.org/10.1063/1.460447)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650 (https://dx.doi.org/10.1063/1.438955)

M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265 (https://dx.doi.org/10.1063/1.447079)

T. H. Dunning Jr, J. Chem. Phys. 90 (1989) 1007 (https://dx.doi.org/10.1063/1.456153)

A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992) 2571 (https://dx.doi.org/10.1063/1.463096)

G. E. S. M. J. Frisch, G. W. Trucks, H. B. Schlegel, V. B. M. A. Robb, J. R. Cheeseman, G. Scalmani, A. V. M. G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, H. P. H. J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, D. W.-Y. J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, A. P. F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, N. R. T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, R. F. G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, H. N. J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, J. E. P. T. Vreven, K. Throssell, J. A. Montgomery, Jr., K. N. K. F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, J. N. V. N. Staroverov, T. A. Keith, R. Kobayashi, S. S. I. K. Raghavachari, A. P. Rendell, J. C. Burant, R. C. J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, O. F. J. W. Ochterski, R. L. Martin, K. Morokuma, et al., (2016) Gaussian, Inc., Wallingford CT

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://dx.doi.org/10.1002/jcc.22885)

T. Lu, F. Chen, J. Mol. Graph. Model. 38 (2012) 314 (https://dx.doi.org/10.1016/j.jmgm.2012.07.004).




DOI: https://doi.org/10.2298/JSC191025140M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)