Properties of the excited electronic states of guanine quartet complexes with alkali metal cations

Main Article Content

Branislav Ž. Milovanović
Milena M. Petković
Mihajlo R. Etinski

Abstract

G-quartets are supra-molecular structures that consist of four guanine molecules connected by eight hydrogen bonds. They are additionally stabilized by metal cations. In this contribution, the excited states of G-quartet and its complexes with lithium, sodium and potassium were studied by employing time-dependent density functional theory. The findings indicate that vertical excitations from the optimized ground state involve transitions from several bases, whereas excitations from the optimized lowest excited state include transitions from one base. The charge-transfer character of these states was analyzed. It was shown that the cations are able to modify positions of the maxima of the fluorescence spectra of the complexes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Ž. Milovanović, M. M. Petković, and M. R. Etinski, “Properties of the excited electronic states of guanine quartet complexes with alkali metal cations”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1021–1032, Aug. 2020.
Section
Theoretical Chemistry

References

Y. P. Yurenko, J. Novotny, V. Sklenávr, R. Marek, Phys. Chem. Chem. Phys. 16 (2014) 2072 (https://dx.doi.org/10.1039/C3CP53875C)

J. Gu, J. Leszczynski, J. Phys. Chem., A 106 (2002) 529 (https://dx.doi.org/10.1021/jp012739g)

F. Zaccaria, G. Paragi, C. Fonseca Guerra, Phys. Chem. Chem. Phys. 18 (2016) 20895 (https://dx.doi.org/10.1039/C6CP01030J)

M. T. Rodgers, P. B. Armentrout, J. Am. Chem. Soc. 122 (2000) 8548–8558 (https://dx.doi.org/10.1021/ja001638d)

F. Zaccaria, C. Fonseca Guerra, Chem. - A Eur. J. 24 (2018) 16315 (https://dx.doi.org/10.1002/chem.201803530)

G. Louit, A. Hocquet, M. Ghomi, M. Meyer, J. Sühnel, PhysChemComm 6 (2003) 1 (https://dx.doi.org/10.1039/B210911E)

J. Gu, J. Leszczynski, M. Bansal, Chem. Phys. Lett. 311 (1999) 209 (https://dx.doi.org/10.1016/S0009-2614(99)00821-0)

W. S. Ross, C. C. Hardin, J. Am. Chem. Soc. 116 (1994) 6070 (https://dx.doi.org/10.1021/ja00093a003)

F. Rosu, V. Gabelica, E. De Pauw, R. Antoine, M. Broyer, P. Dugourd, J. Phys. Chem., A 116 (2012) 5383 (https://dx.doi.org/10.1021/jp302468x)

L. Martinez-Fernández, A. Banyasz, D. Markovitsi, R. Improta, Chem. - A Eur. J. 24 (2018) 15185 (https://dx.doi.org/10.1002/chem.201803222)

M. E. Sherlock, C. A. Rumble, C. K. Kwok, J. Breffke, M. Maroncelli, P. C. Bevilacqua, J. Phys. Chem., B 120 (2016) 5146 (https://dx.doi.org/10.1021/acs.jpcb.6b03790)

Y. Hua, P. Changenet-Barret, R. Improta, I. Vayá, T. Gustavsson, A. B. Kotlyar, D. Zikich, P. Šket, J. Plavec, D. Markovitsi, J. Phys. Chem., C 116 (2012) 14682 (https://dx.doi.org/10.1021/jp303651e)

A. Banyasz, L. Martinez-Fernandez, C. Balty, M. Perron, T. Douki, R. Improta, D. Markovitsi, J. Am. Chem. Soc. 139 (2017) 10561 (https://dx.doi.org/10.1021/jacs.7b05931)

R. Improta, Chem. Eur. J. 20 (2014) 8106–8115 (https://dx.doi.org/10.1002/chem.201400065)

C. J. Lech, A. T. Phan, M.-E. Michel-Beyerle, A. A. Voityuk, J. Phys. Chem., B 119 (2015) 3697 (https://dx.doi.org/10.1021/jp512767j)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://dx.doi.org/10.1007/s00214-007-0401-8

T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://dx.doi.org/10.1016/j.cplett.2004.06.011)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://dx.doi.org/10.1063/1.464913)

D. Jacquemin, E. A. Perpete, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2071 (https://dx.doi.org/10.1021/ct100119e)

G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193 (https://dx.doi.org/10.1063/1.455064)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639 (https://dx.doi.org/10.1063/1.438980)

G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081 (https://dx.doi.org/10.1063/1.460447)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650 (https://dx.doi.org/10.1063/1.438955)

M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265 (https://dx.doi.org/10.1063/1.447079)

T. H. Dunning Jr, J. Chem. Phys. 90 (1989) 1007 (https://dx.doi.org/10.1063/1.456153)

A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992) 2571 (https://dx.doi.org/10.1063/1.463096)

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://dx.doi.org/10.1002/jcc.22885)

T. Lu, F. Chen, J. Mol. Graph. Model. 38 (2012) 314 (https://dx.doi.org/10.1016/j.jmgm.2012.07.004).