Properties of the excited electronic states of guanine quartet complexes with alkali metal cations

Authors

  • Branislav Ž. Milovanović University of Belgrade, Faculty of Physical Chemistry Studentski trg 12-16, 11158 Belgrade
  • Milena M. Petković University of Belgrade, Faculty of Physical Chemistry Studentski trg 12-16, 11158 Belgrade
  • Mihajlo R. Etinski University of Belgrade, Faculty of Physical Chemistry Studentski trg 12-16, 11158 Belgrade

DOI:

https://doi.org/10.2298/JSC191025140M

Keywords:

density functional theory, G-quadruplex, fluorescence

Abstract

G-quartets are supra-molecular structures that consist of four guanine molecules connected by eight hydrogen bonds. They are additionally stabilized by metal cations. In this contribution, the excited states of G-quartet and its complexes with lithium, sodium and potassium were studied by employing time-dependent density functional theory. The findings indicate that vertical excitations from the optimized ground state involve transitions from several bases, whereas excitations from the optimized lowest excited state include transitions from one base. The charge-transfer character of these states was analyzed. It was shown that the cations are able to modify positions of the maxima of the fluorescence spectra of the complexes.

References

Y. P. Yurenko, J. Novotny, V. Sklenávr, R. Marek, Phys. Chem. Chem. Phys. 16 (2014) 2072 (https://dx.doi.org/10.1039/C3CP53875C)

J. Gu, J. Leszczynski, J. Phys. Chem., A 106 (2002) 529 (https://dx.doi.org/10.1021/jp012739g)

F. Zaccaria, G. Paragi, C. Fonseca Guerra, Phys. Chem. Chem. Phys. 18 (2016) 20895 (https://dx.doi.org/10.1039/C6CP01030J)

M. T. Rodgers, P. B. Armentrout, J. Am. Chem. Soc. 122 (2000) 8548–8558 (https://dx.doi.org/10.1021/ja001638d)

F. Zaccaria, C. Fonseca Guerra, Chem. - A Eur. J. 24 (2018) 16315 (https://dx.doi.org/10.1002/chem.201803530)

G. Louit, A. Hocquet, M. Ghomi, M. Meyer, J. Sühnel, PhysChemComm 6 (2003) 1 (https://dx.doi.org/10.1039/B210911E)

J. Gu, J. Leszczynski, M. Bansal, Chem. Phys. Lett. 311 (1999) 209 (https://dx.doi.org/10.1016/S0009-2614(99)00821-0)

W. S. Ross, C. C. Hardin, J. Am. Chem. Soc. 116 (1994) 6070 (https://dx.doi.org/10.1021/ja00093a003)

F. Rosu, V. Gabelica, E. De Pauw, R. Antoine, M. Broyer, P. Dugourd, J. Phys. Chem., A 116 (2012) 5383 (https://dx.doi.org/10.1021/jp302468x)

L. Martinez-Fernández, A. Banyasz, D. Markovitsi, R. Improta, Chem. - A Eur. J. 24 (2018) 15185 (https://dx.doi.org/10.1002/chem.201803222)

M. E. Sherlock, C. A. Rumble, C. K. Kwok, J. Breffke, M. Maroncelli, P. C. Bevilacqua, J. Phys. Chem., B 120 (2016) 5146 (https://dx.doi.org/10.1021/acs.jpcb.6b03790)

Y. Hua, P. Changenet-Barret, R. Improta, I. Vayá, T. Gustavsson, A. B. Kotlyar, D. Zikich, P. Šket, J. Plavec, D. Markovitsi, J. Phys. Chem., C 116 (2012) 14682 (https://dx.doi.org/10.1021/jp303651e)

A. Banyasz, L. Martinez-Fernandez, C. Balty, M. Perron, T. Douki, R. Improta, D. Markovitsi, J. Am. Chem. Soc. 139 (2017) 10561 (https://dx.doi.org/10.1021/jacs.7b05931)

R. Improta, Chem. Eur. J. 20 (2014) 8106–8115 (https://dx.doi.org/10.1002/chem.201400065)

C. J. Lech, A. T. Phan, M.-E. Michel-Beyerle, A. A. Voityuk, J. Phys. Chem., B 119 (2015) 3697 (https://dx.doi.org/10.1021/jp512767j)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://dx.doi.org/10.1007/s00214-007-0401-8

T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://dx.doi.org/10.1016/j.cplett.2004.06.011)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://dx.doi.org/10.1063/1.464913)

D. Jacquemin, E. A. Perpete, I. Ciofini, C. Adamo, R. Valero, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2071 (https://dx.doi.org/10.1021/ct100119e)

G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193 (https://dx.doi.org/10.1063/1.455064)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639 (https://dx.doi.org/10.1063/1.438980)

G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081 (https://dx.doi.org/10.1063/1.460447)

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650 (https://dx.doi.org/10.1063/1.438955)

M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 80 (1984) 3265 (https://dx.doi.org/10.1063/1.447079)

T. H. Dunning Jr, J. Chem. Phys. 90 (1989) 1007 (https://dx.doi.org/10.1063/1.456153)

A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992) 2571 (https://dx.doi.org/10.1063/1.463096)

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://dx.doi.org/10.1002/jcc.22885)

T. Lu, F. Chen, J. Mol. Graph. Model. 38 (2012) 314 (https://dx.doi.org/10.1016/j.jmgm.2012.07.004).

Published

2020-08-25

How to Cite

[1]
B. Ž. Milovanović, M. M. Petković, and M. R. Etinski, “Properties of the excited electronic states of guanine quartet complexes with alkali metal cations”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1021-1032, Aug. 2020.

Issue

Section

Theoretical Chemistry