A computational study of the chemical reactivity of isoxaflutole herbicide and its active metabolite using global and local descriptors

Luis Humberto Mendoza-Huizar, Clara Hilda Rios-Reyes, Hector Zuñiga-Trejo


In this work, the chemical reactivity of isoxaflutole (ISOX) and diketonitrile (DKN) was analyzed at the X/6-311++G(2d,2p) (where X =
= B3LYP, M06, M06L and ωB97XD) level of theory, in the gas and aqueous phases. The results indicate that DKN, the active metabolite of ISOX, is more stable than isoxaflutole in both phases. ISOX is susceptible to electrophilic and free radical reactions through the isoxazole ring; while the carbonyl group is attacked by nucleophiles. For DKN nucleophilic and free radical attacks are expected on the aromatic ring, while electrophilic attacks are favored on the oxygen atom of the carbonyl groups. The results suggest that the cleavage of the N–O bond in the isoxazole ring is possible through electrophilic and free radical attacks, while electrophilic and free radical attacks will favor substi­tutions on the carbonyl groups of DKN.


isoxaflutole; diketonitrile; Fukui function


G. K. Sims, S. Taylor-Lovell, G. Tarr, S. Maskel, Pest Manage. Sci. 65 (2009) 805 (http://dx.doi.org/10.1002/ps.1758)

L. Alletto, Y. Coquet, V. Bergheaud, P. Benoit, Chemosphere 88 (2012) 1043 (http://dx.doi.org/10.1016/j.chemosphere.2012.05.021)

E. Beltran, H. Fenet, J. F. Cooper, C. M. Coste, J. Agric. Food Chem. 48 (2000) 4399 (https://dx.doi.org/10.1021/jf991247m)

US-EPA, Pesticide-Fact Sheet for Isoxaflutole, United States Environmental Protection Agency, Washington, 1998, (https://www3.epa.gov/pesticides/chem_search/reg_acti¬ons/registration/fs_PC-123000_15-Sep-98.pdf)

S. Taylor-Lovell, G. K. Sims, L. M. Wax, J. Agric. Food Chem. 50 (2002) 5626 (http://dx.doi.org/10.1021/jf011486l)

K. E. Pallett, J. P. Little, M. Sheekey, P. Veerasekaran, Pestic. Biochem. Physiol. 62 (1998) 113 (http://dx.doi.org/10.1006/pest.1998.2378)

C. H. Lin, R. N. Lerch, H. E. Garrett, M. F. George, J. Agric. Food Chem. 51 (2003) 8011 (http://dx.doi.org/10.1021/jf034473b)

W. Aktar, D. Sengupta, A. Chowdhury, Interdiscip. Toxicol. 2 (2009) 1 (https://dx.doi.org/10.2478/v10102-009-0001-7)

E. Gatica, D. Possetto, A. Reynoso, J. Natera, S. Miskoski, E. De Gerónimo, M. Bregliani, A. Pajares, W. A. Massad, Photochem. Photobiol. 95 (2019) 901 (http://dx.doi.org/10.1111/php.13047)

P. V Shah, R. A. Solecki, in Proceedings of Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assesment Group on Pesticide Residues, 2013, Geneva, Switzerland, Pesticide Residues in Food - 2013: Toxicological Evaluations, World Health Organization, Geneva, 2014, p. 393

G. H. Michler, Atlas of Polymer Structures Morphology, Deformation, and Fracture Structures, Carl Hanser Verlag GmbH & Co. KG, Munich, 2016, p. 27 (http://dx.doi.org/10.3139/9781569905586.002)

C. Mougin, F. D. Boyer, E. Caminade, R. Rama, J. Agric. Food Chem. 48 (2000) 4529 (http://dx.doi.org/10.1021/jf000397q)

R. N. Lerch, C. H. Lin, N. D. Leigh, J. Agric. Food Chem. 55 (2007) 1893 (http://dx.doi.org/10.1021/jf062713s)

J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3 (http://www.scielo.org.mx/pdf/jmcs/v52n1/v52n1a2.pdf)

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793 (http://dx.doi.org/10.1021/cr990029p)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://dx.doi.org/10.1021/ja00364a005)

R. G. Pearson, J. Chem. Educ. 64 (1987) 561 (http://dx.doi.org/10.1021/ed064p561)

R. G. Parr, P. K. Chattaraj, J. Am. Chem. Soc. 113 (1991) 1854 (http://dx.doi.org/10.1021/ja00005a072)

R. G. Pearson, J. Am. Chem. Soc. 107 (1985) 6801 (https://dx.doi.org/10.1021/ja00310a009)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (http://dx.doi.org/10.1063/1.436185)

R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (http://dx.doi.org/10.1021/ja983494x)

P. K. Chattaraj, Chemical reactivity theory : a density functional view, First, CRC Press/Taylor & Francis, Boca Raton, FL, 2009 (ISBN 9781420065435)

R. G. Parr, W. Yang, Density-functional theory of atoms and molecules, First, Oxford University Press, New York, 1989 (ISBN-10 0195092767)

J. L. Gázquez, F. Méndez, J. Phys. Chem. 98 (1994) 4591 (https://dx.doi.org/10.1021/j100068a018)

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://dx.doi.org/10.1021/ja00326a036)

W. Yang, W. J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708 (https://dx.doi.org/10.1021/ja00279a008)

A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://dx.doi.org/10.1103/PhysRevA.38.3098)

А. D. Becke, J. Chem. Phys. 98 (1993) 5648 (http://dx.doi.org/10.1063/1.464913).

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (http://dx.doi.org/10.1007/s00214-007-0310-x)

Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, X. He, X. H. Designed, X. H. Performed, PNAS 114 (2017) 8487 (http://dx.doi.org/10.1073/pnas.1705670114)

J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615 (http://dx.doi.org/10.1039/b810189b)

K. Ghosh, B. Chatterjee, A. G. Jayaprasad, S. R. Kanade, Sci. Total Environ. 624 (2018) 1612 (http://dx.doi.org/10.1016/j.scitotenv.2017.10.058)

A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639 (http://dx.doi.org/10.1063/1.438980)

S. Miertus̃, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117 (https://dx.doi.org/10.1016/0301-0104(81)85090-2)

S. Miertus̃, J. Tomasi, Chem. Phys. 65 (1982) 239 (http://dx.doi.org/10.1016/0301-0104(82)85072-6)

Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT, 2009

Gaussview Rev. 3.09, Windows version, Gaussian Inc., Pittsburgh, PA

F. L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129 (http://dx.doi.org/10.1007/BF00549096).

DOI: https://doi.org/10.2298/JSC191105024M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)