Investigation the effects of Al-grafting and calcination temperature on acidity and physicochemical properties of silica SBA-15

Reza Orouj, Mehdi Rashidzadeh, Akbar Irandoukht, Sepehr Sadighi

Abstract


In this study, the effect of calcination temperature and Si/Al molar ratio on acidity and physicochemical properties of silica SBA-15 were investigated. Silica SBA-15 samples were calcined at 350, 450 and 550 °C, and then post-synthesis Al-grafting method was applied to incorporate aluminum species into their framework with Si/Al mole ratio of 10 and 30. Characterizations using small angle XRD and N2 adsorption-desorption techniques indicated that hexagonal mesoporous structure was retained after performing Al-grafting even at high aluminum loading. Moreover, the FTIR results implied that aluminum species were incorporated into SBA-15 framework. NH3-TPD results showed that by decreasing Si/Al mole ratio at all calcination temperatures, the number of weak acid sites increased in comparison to the pure SBA-15 samples. Additionally, the maximum total acidity of synthesized samples was observed at the calcination temperature of 450 °C with Si/Al mole ratio of 30.


Keywords


silica SBA-15; post-synthesis Al-grafting; acidity; physicochemical properties.

Full Text:

PDF (1,293 kB)

References


J. C. Morales-Ortuno, R. A. Ortega-Domínguez, P. Hernández-Hipólito, X. Bokhimi, T. E. Klimova, Catal. Today. 271 (2016) 127 (https://doi.org/10.1016/j.cattod.2015.07.028)

K. Jaroszewska, A. Masalska, D. Czycz, J. Grzechowiak, Fuel Process. Technol. 167 (2017) 1 (https://doi.org/10.1016/j.fuproc.2017.06.012)

T. Klimova, J. Reyes, O. Gutierrez, L. Lizama, Appl. Catal. A. 335 (2008) 159 (https://doi.org/10.1016/j.apcata.2007.11.008)

Y. Ganjkhanlou, Z. Tišler, J. M. Hidalgo, K. Frolich, J. Kotera, P. Čičmanec, R. Bulanek, Chem. Pap. 72 (2018) 937 (https://doi.org/10.1007/s11696-017-0336-z)

Gh. Mohammadi Ziarani, M. Rahimifard, F. Nouri, A. Badiei, J. Serb. Chem. Soc. 80 (2015) 1265 (https://doi.org/10.2298/JSC140930045M)

J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, M. Linde, Langmuir. 23 (2007) 4315 (https://doi.org/10.1021/la062450w)

R. Ojeda-López, I. J. Pérez-Hermosillo, J. M. Esparza-Schul, A. Cervantes-Uribe, Adsorption. 21 (2015) 659 (https://doi.org/10.1007/s10450-015-9716-2)

H. M. Kao, Ch. Ch. Ting, Sh. W. Chao, J. Mol. Catal A: Chem. 235 (2005) 200 (https://doi.org/10.1016/j.molcata.2005.03.026)

D. Gao, A. Duan, X. Zhang, Zh. Zhao, E. Hong, J. Li, H. Wang, Appl. Catal. B. 165 (2015) 269 (https://doi.org/10.1016/j.apcatb.2014.10.034)

Zh. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11 (1999) 1621 (https://doi.org/10.1021/cm9900756)

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science. 279 (1998a) 548 (https://doi.org/10.1126/science.279.5350.548)

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998b) 6024 (https://doi.org/10.1021/ja974025i)

K. Ch. Mouli, K. Soni, A. Dalai, J. Adjaye, Appl. Catal. A: General. 404 (2011) 21 (https://doi.org/10.1016/j.apcata.2011.07.001)

R. Orouj, M. Rashidzadeh, A. Irandokht, S. Sadighi, Energy Sources, part A. (2019) (https://doi.org/10.1080/15567036.2019.1655116)

A. A. Gurinov, Y. A. Rozhkova, A. Zukal, J. Cejka, I. G. Shenderovich, Langmuir. 27 (2011) 12115 (https://doi.org/10.1021/la2017566)

G. Chandrasekar, M. Hartmann, M. Palanichamy, V. Murugesan, Catal. Commun. 8 (2007) 457 (https://doi.org/10.1016/j.catcom.2006.07.021)




DOI: https://doi.org/10.2298/JSC191129021O

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)