Investigation the effects of Al-grafting and calcination temperature on the acidity and physicochemical properties of silica SBA-15

Reza Orouj, Mehdi Rashidzadeh, Akbar Irandoukht, Sepehr Sadighi

Abstract


In this study, the effect of calcination temperature and Si/Al mole ratio on acidity and physicochemical properties of silica SBA-15 were inves­tigated. Silica SBA-15 samples were calcined at 350, 450 and 550 °C, and then post-synthesis, the Al-grafting method was applied to incorporate aluminum species into their framework with Si/Al mole ratio of 10 and 30. Charac­ter­izations using small angle XRD and N2 adsorption–desorption techniques indi­cated that the hexagonal mesoporous structure was retained after performing Al-grafting even at the high aluminum loading. Moreover, FTIR results imp­lied that the aluminum species were incorporated into the SBA-15 framework. NH3-TPD results showed that by decreasing Si/Al mole ratio at all calcination temperatures, the number of weak acid sites increased in comparison to those of the pure SBA-15 samples. Additionally, the maximum total acidity of syn­thesized samples was observed at the calcination temperature of 450 °C with Si/Al mole ratio of 30.


Keywords


silica SBA-15; post-synthesis Al-grafting; acidity; physicochemical properties.

Full Text:

PDF (2,283 kB)

References


J. C. Morales-Ortuno, R. A. Ortega-Domínguez, P. Hernández-Hipólito, X. Bokhimi, T. E. Klimova, Catal. Today 271 (2016) 127 (https://doi.org/10.1016/j.cattod.2015.07.028)

K. Jaroszewska, A. Masalska, D. Czycz, J. Grzechowiak, Fuel Process. Technol. 167 (2017) 1 (https://doi.org/10.1016/j.fuproc.2017.06.012)

T. Klimova, J. Reyes, O. Gutierrez, L. Lizama, Appl. Catal., A 335 (2008) 159 (https://doi.org/10.1016/j.apcata.2007.11.008)

Y. Ganjkhanlou, Z. Tišler, J. M. Hidalgo, K. Frolich, J. Kotera, P. Čičmanec, R. Bulanek, Chem. Pap. 72 (2018) 937 (https://doi.org/10.1007/s11696-017-0336-z)

Gh. Mohammadi Ziarani, M. Rahimifard, F. Nouri, A. Badiei, J. Serb. Chem. Soc. 80 (2015) 1265 (https://doi.org/10.2298/JSC140930045M)

J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, M. Linde, Langmuir 23 (2007) 4315 (https://doi.org/10.1021/la062450w)

R. Ojeda-López, I. J. Pérez-Hermosillo, J. M. Esparza-Schul, A. Cervantes-Uribe, Adsorption 21 (2015) 659 (https://doi.org/10.1007/s10450-015-9716-2)

H. M. Kao, Ch. Ch. Ting, Sh. W. Chao, J. Mol. Catal., A: Chem. 235 (2005) 200 (https://doi.org/10.1016/j.molcata.2005.03.026)

D. Gao, A. Duan, X. Zhang, Zh. Zhao, E. Hong, J. Li, H. Wang, Appl. Catal., B 165 (2015) 269 (https://doi.org/10.1016/j.apcatb.2014.10.034)

Zh. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11 (1999) 1621 (https://doi.org/10.1021/cm9900756)

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548 (https://doi.org/10.1126/science.279.5350.548)

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024 (https://doi.org/10.1021/ja974025i)

S. Brunauer,P. H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309

E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373

W. D. Harkins, G. J. Jura, Chem. Phys. 11 (1943) 430

K. Ch. Mouli, K. Soni, A. Dalai, J. Adjaye, Appl. Catal., A: Gen. 404 (2011) 21 (https://doi.org/10.1016/j.apcata.2011.07.001)

R. Orouj, M. Rashidzadeh, A. Irandokht, S. Sadighi, Energy Sources, A (2019) (https://doi.org/10.1080/15567036.2019.1655116)

A. A. Gurinov, Y. A. Rozhkova, A. Zukal, J. Cejka, I. G. Shenderovich, Langmuir 27 (2011) 12115 (https://doi.org/10.1021/la2017566)

G. Chandrasekar, M. Hartmann, M. Palanichamy, V. Murugesan, Catal. Commun. 8 (2007) 457 (https://doi.org/10.1016/j.catcom.2006.07.021).




DOI: https://doi.org/10.2298/JSC191129021O

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)