The influence of the annealing mode on stress elimination in a foam glass structure
Main Article Content
Abstract
The purpose of this work was to establish the influence of features of the annealing mode on the value of residual stresses in the structure of porous inorganic materials using foam glass as an example. A single-stage uniform cooling mode at three different speeds was considered. The study was performed using a mathematical model. The algorithm for analyzing the stress–strain state of the foam glass sample consisted in solving a system of equations by the finite element method. The calculation results are presented in graphic form. The graphics show the changes in stress in the foam glass upon cooling at speeds of 100, 10 and 1 °C min-1. The temperature difference and the viscosity values of the foam glass subsurface and central layers in dependency on different temperatures of the cooling onset are presented. It was concluded that it is necessary to carry out the annealing mode of foam glass in three stages: initial, glass transition step and stabilization step, meaning different cooling rates have to be applied in different stages.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
K. S. Ivanov, Mag. Civ. Eng. 5 (2019) 52 (https://dx.doi.org/10.18720/MCE.89.5)
Y. V. Selivanov, A. D. Shiltsina, V. M. Selivanov, Y. V. Loginova, N. N. Korolkova, Mag. Civ. Eng. 3 (2012) 35 (https://dx.doi.org/10.5862/MCE.29.4)
B. S. Semukhin, O. V. Kazmina, A. Y. Volkova, V. I. Suslyayev, Rus. Phys. J. 12 (2017) 2130 (https://dx.doi.org/10.1007/s11182-017-1024-8)
L. Lakov, B. Jivov, M. Aleksandrova, Y. Ivanova, K. Toncheva, J. Chem. Tech. Met. 6 (2018) 1081 (https://dl.uctm.edu/journal/node/j2018-6/8_17-204_p_1081-1086.pdf)
S. Schiavoni, F. D'Alessandro, F. Bianchi, F. Asdrubali, Renew. Sust. Energy Rev. 62 (2016) 988 (https://dx.doi.org/10.1016/j.rser.2016.05.045)
J. Zach, M. Sedlmajer, J. Bubenik, M. Drdlova, IOP Conf. Ser.: Mater. Sci. Eng. 583 (2019) 012016 (https://dx.doi.org/10.1088/1757-899X/583/1/012016)
Z. Qin, G. Li, Y. Tian, Y. Ma, P. Shen, Mater. 12 (2018) 54 (https://dx.doi.org/10.3390/ma12010054)
C. Xi, F. Zheng, J. Xu, W. Yang, Y. Peng, Y. Li, P. Li, Q. Zhen, S. Bashir, J.L. Liu, Constr. Build. Mater. 190 (2018) 896 (https://dx.doi.org/10.1016/j.conbuildmat.2018.09.170)
O. V. Puchka, V. S. Lesovik, N. I. Minko, S. S. Vaysera, M. A. Frolova, Res. J. Appl. Sci. 10 (2014) 674 (https://medwelljournals.com/abstract/?doi=rjasci.2014.674.679)
O. V. Kazmina, S. N. Volland, M. A. Dushkina, IOP Conf. Ser.: Mater. Sci. Eng. 64 (2014) 012015 (https://dx.doi.org/10.1088/1757-899X/64/1/012015)
R. R. Petersen, J. König, Y. Yue, J. Non-Cryst. Solids 425 (2015) 74 (https://dx.doi.org/10.1016/j.jnoncrysol.2015.05.030)
I. I. Kitajgorodskiy, Penosteklo, Strojizdat, Moscow, 1958
B. K. Demidovich, Penosteklo, Nauka i Technika, Minsk, 1975
A. I. Shutov, L. I. Yashurkaeva, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 64 (2007) 397 (https://dx.doi.org/10.1007/s10717-007-0099-z)
I. S. Grushko, Glass Ceram. 73 (2017) 355 (https://dx.doi.org/10.1007/s10717-017-9888-1)
A. I. Shutov, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 63 (2006) 213 (https://dx.doi.org/10.1007/s10717-006-0082-0)
A. I. Shutov, L. I. Yashurkaeva, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 64 (2007) 297 (https://dx.doi.org/10.1007/s10717-007-0074-8)
A. I. Shutov, S. V. Alekseev, T. V. Yashurkaev, Tech. Technol. Silic. 13 (2006) 14 (https://elibrary.ru/item.asp?id=12909525)
O. V. Mazurin, Steklovanije & Stabilizacija Neorganicheskih Stekol, Nauka, Leningrad, 1978
O. V. Mazurin, Steklovanije, Nauka, Leningrad, 1986
I. S. Grushko, Izv. Vish. Uch. Zav. Sev.-Kav. Reg. Ser.: Tech. Sci. 2 (2018) 90 (https://dx.doi.org/10.17213/0321-2653-2018-2-90-95)
N. N. Fedorova, S. A., Valger, M. N. Danilov, Yu. V. Zaharova, Osnovi raboti v Ansys 17, DMK Press, Moscow, 2017
O. Yu. Smetannikov, N. A. Trufanov, Vich. Mech. Splosh. Sred. 1 (2008) 92.
E. Melan, G. Parkus, Termouprugie naprjazhenija, vizvannie stacionarnimi temperaturnimi poljami, Fizatgiz, Moscow, 1958
I. Grushko, in 13th International Scientific-Technical Conference on Dynamic of Technical Systems, 2017, Rostov-on-Don, Russia, XIII International Scientific-Technical Conference "Dynamic of Technical Systems" (DTS-2017), MATEC Web Conf., EDP Sciences, Les Ulis, France, 2017, Abstract No. 03006 (https://dx.doi.org/10.1051/matecconf/201713203006)
I. S. Grushko, IOP Conf. Ser.: Mater. Sci. Eng. 389 (2018) 012001 (https://dx.doi.org/10.1088/1757-899X/389/1/012001)
GSSSD 101-86: Diocsid ugleroda. Koefficienti vjazkosti, teploprovodnosti i chislo Prandtlja razrezhennogo gaza v diapazone temperatur 150–2000 K / Tablici spravochnih dannih, 1986
N. V. Cederberg, Teploprovodnost gazov i zhidkostej, Gosenergoizdat, Moscow, 1963
L. N. Latyev, V. A. Petrov, V. Ya. Chehovskij, E. N. Shestakov, Izluchatelnije svojstva tverdih materialov: spravochnik, Energija, Moscow, 1974
A. Minsar, Teploprovodnost tverdih tel, zhidkostej, gazov i ih kompozicij, Mir, Moscow, 1968
F. Shill, Penosteklo, Izdatelstvo literaturi po stroitelstvu, Moscow, 1965
V. G. Baranov, A. V. Tenishev, A. V. Lunev, S. A. Pokrovskij, A. V. Hlunov, Jad. Fiz. Inzhin. 4 (2011) 291
O. V. Mazurin, Yu. K. Starcev, R. Ya. Hodakovskaja, Relaksacionnaja teorija otzhiga stekla i raschet na ee osnove rezhimov otzhiga. Uchebnoe posobie. MHTI named by D.I. Mendeleev, Moscow, 1987
O. V. Mazurin, Yu. L. Belousov, Otzhig I Zakalka Stekla, MISI&BTISM, Moscow, 1984.