The influence of the annealing mode on stress elimination in the foam glass structure

Irina Grushko

Abstract


The purpose of this work is to establish the influence of the features of the annealing mode on the value of residual stresses in the structure of porous inorganic materials using the example of foam glass. A single-stage uniform cooling mode of foam glass with three different speeds is considered. The study was carried out using a mathematical model, the algorithm for analyzing the stress-strain state of the foam glass sample consists in solving the system of equations by the finite element method. The calculation results are presented in graphic form. The graphics show the changes in stress in the foam glass upon cooling at speeds of 100, 10 and 1 °C min-1. The temperature difference and the viscosity values of the foam glass subsurface and central layers as a dependency of the different temperatures of the cooling onset are presented. It is concluded that it is necessary to carry out the annealing mode of foam glass in three stages: initial, glass transition step and stabilization step, meaning different cooling rates have to be applied in different stages.


Keywords


Strain; slags; cooling; silicates; finite element method; energy efficiency

Full Text:

PDF (1,594 kB)

References


K. S. Ivanov, Mag. Civ. Eng. 5 (2019) 52 (https://dx.doi.org/10.18720/MCE.89.5)

Y. V. Selivanov, A. D. Shiltsina, V. M. Selivanov, Y. V. Loginova, N. N. Korolkova, Mag. Civ. Eng. 3 (2012) 35 (https://dx.doi.org/10.5862/MCE.29.4)

B. S. Semukhin, O. V. Kazmina, A. Y. Volkova, V. I. Suslyayev, Rus. Phy. J. 12 (2017) 2130 (https://dx.doi.org/10.1007/s11182-017-1024-8)

L. Lakov, B. Jivov, M. Aleksandrova, Y. Ivanova, K. Toncheva, J. Chem. Tech. & Met. 6 (2018) 1081 (https://dl.uctm.edu/journal/node/j2018-6/8_17-204_p_1081-1086.pdf)

S. Schiavoni, F. D'Alessandro, F. Bianchi, F. Asdrubali, Renew. & Sust. Ener. Rev. 62 (2016) 988 (https://dx.doi.org/10.1016/j.rser.2016.05.045)

J. Zach, M. Sedlmajer, J. Bubenik, M. Drdlova, IOP Conf. Ser.: Mater. Sci. Eng. 583 (2019) 012016 (https://dx.doi.org/10.1088/1757-899X/583/1/012016)

Z. Qin, G. Li, Y. Tian, Y. Ma, P. Shen, Mater. 12, 1 (2018) 54 (https://dx.doi.org/10.3390/ma12010054)

C. Xi, F. Zheng, J. Xu, W. Yang, Y. Peng, Y. Li, P. Li, Q. Zhen, S. Bashir, J.L. Liu, Const. & Buil. Mat. 190 (2018) 896 (https://dx.doi.org/10.1016/j.conbuildmat.2018.09.170)

O. V. Puchka, V. S. Lesovik, N. I. Minko, S. S. Vaysera, M. A. Frolova, Res. J. App. Sci. 10 (2014) 674-679. (https://medwelljournals.com/abstract/?doi=rjasci.2014.674.679)

O. V. Kazmina, S. N. Volland, M. A. Dushkina, IOP Conf. Ser.: Mater. Sci. Eng. 64 (2014) 012015 (https://dx.doi.org/10.1088/1757-899X/64/1/012015)

R. R. Petersen, J. König, Y. Yue, J. Non-Crys. Sol. 425 (2015) 74 (https://dx.doi.org/10.1016/j.jnoncrysol.2015.05.030)

I. I. Kitajgorodskiy, Penosteklo, Strojizdat, Moscow, USSR, 1958

B. K. Demidovich, Penosteklo, Nauka & Technika, Minsk, USSR, 1975

A. I. Shutov, L. I. Yashurkaeva, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 64 (2007) 397 (https://dx.doi.org/10.1007/s10717-007-0099-z)

I. S. Grushko, Glass Ceram. 73 (2017) 355 (https://dx.doi.org/10.1007/s10717-017-9888-1)

A. I. Shutov, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 63 (2006) 213 – 214. (https://dx.doi.org/10.1007/s10717-006-0082-0)

A. I. Shutov, L. I. Yashurkaeva, S. V. Alekseev, T. V. Yashurkaev, Glass Ceram. 64 (2007) 297 (https://dx.doi.org/10.1007/s10717-007-0074-8)

A. I. Shutov, S. V. Alekseev, T. V. Yashurkaev, Tech. & Technology Silic. 13 (2006) 14 (https://elibrary.ru/item.asp?id=12909525)

O. V. Mazurin, Steklovanije & Stabilizacija Neorganicheskih Stekol, Nauka, Leningrad, USSR, 1978

O. V. Mazurin, Steklovanije, Nauka, Leningrad, USSR, 1986

I. S. Grushko, Izv. Vish. Uch. Zav. Sev.-Kav. Reg. Ser.: Tech. Sci. 2 (2018) 90 (https://dx.doi.org/10.17213/0321-2653-2018-2-90-95)

N. N. Fedorova, S. A., Valger, M. N. Danilov, Yu. V. Zaharova, Osnovi raboti v Ansys 17, DMK Press, Moscow, Russia, 2017.

O. Yu. Smetannikov, N. A. Trufanov, Vich. Mech. Splosh. Sred. 1 (2008) 92.

E. Melan, G. Parkus, Termouprugie naprjazhenija, vizvannie stacionarnimi temperaturnimi poljami, Fizatgiz, Moscow, 1958.

I. Grushko, Definition of the strain-stress distribution of porous glass in the retarded cooling temperature range, in 13th International Scientific-Technical Conference on Dynamic of Technical Systems, (2017), Rostov-on-Don, Russia, XIII International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2017), MATEC Web Conf., EDP Sciences, Les Ulis, France, 2017, Abstract No. 03006 (https://dx.doi.org/10.1051/matecconf/201713203006)

I. S. Grushko, IOP Conf. Ser.: Mater. Sci. Eng. 389 (2018) 012001 (https://dx.doi.org/10.1088/1757-899X/389/1/012001)

GSSSD 101-86: Diocsid ugleroda. Koefficienti vjazkosti, teploprovodnosti i chislo Prandtlja razrezhennogo gaza v diapazone temperatur 150…2000 K / Tablici spravochnih dannih (1986)

N. V. Cederberg, Teploprovodnost gazov i zhidkostej, Gosenergoizdat, Moscow-Leningrad, USSR, 1963.

L. N. Latyev, V. A. Petrov, V. Ya. Chehovskij, E. N. Shestakov, Izluchatelnije svojstva tverdih materialov: spravochnik, Energija, Moscow, USSR, 1974.

A. Minsar, Teploprovodnost tverdih tel, zhidkostej, gazov i ih kompozicij, Mir, Moscow, USSR, 1968.

F. Shill, Penosteklo, Izdatelstvo literaturi po stroitelstvu, Moscow, USSR, 1965

V. G. Baranov, A. V. Tenishev, A. V. Lunev, S. A. Pokrovskij, A. V. Hlunov, Jad. fiz. & inzhin. 4 (2011) 291.

O. V. Mazurin, Yu. K. Starcev, R. Ya. Hodakovskaja, Relaksacionnaja teorija otzhiga stekla i raschet na ee osnove rezhimov otzhiga. Uchebnoe posobie. MHTI named by D.I. Mendeleev, Moscow, USSR, 1987.

O. V. Mazurin, Yu. L. Belousov, Otzhig I Zakalka Stekla, MISI&BTISM, Moscow, USSR, 1984




DOI: https://doi.org/10.2298/JSC191218034G

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)