The use of mucilage extracted from Opuntia ficus indica as microencapsulating shell

Hanedi Elhleli, Faten Mannai, Ramzi Khiari, Younes Moussaoui

Abstract


This study aimed to investigate the micro-formulation of capsules, using natural biopolymers such as cactus mucilage, carboxymethyl cellulose and chitosan as a wall material, for the transport and supply of sunflower oil. Mucilages were extracted from Opuntia ficus indica by precipitation at different supernatant pH values. The extracted natural polysaccharide and the resulting microcapsules were characterised by different experimental techniques. Fourier transform infrared spectroscopy analysis of the CM showed the presence of uronic acid units and sugars. Scanning electron microscopy revealed that most particles were adhered together, causing the formation of compact, linked agglomerates, which resulted in different microstructures with irregular shapes. All oil-core microcapsules were characterised, and the results showed that the different shell materials could be used to microencapsulate sunflower oil. Among them, the microcapsule crosslinked with the CM and Chi was the most suitable, with the highest encapsulation efficiency (95%). This coacervation led to the narrowest size distribution of capsules, with diameters ranging from 1 to 5 μm. Optical microscopy confirmed the deposition of coacervate droplets around oil drops and clearly showed that the formation of coacervated particles and their deposition onto oil droplets were successive events.

Keywords


Opuntia ficus indica; extraction; microcapsules; mucilage cactus

Full Text:

PDF (2.902 kB)

References


C. Thies, Microencapsulation. In "Encyclopiedia of Polymer Science Engineering" 2nd ed, Volume 9, Mark, H. F. et al (ed), John Wiley and Sons, 1987. pp. 724-745 (ISBN: 9780471809418)

W. C. Griffin, Solid essential oil concentrate and process of preparing the same. (1951) U. S. Patent No. 2,556,410.

B. K. Green, L. Scheleicher, Manifold record material (1956) U. S. Patent No. 2,730,456.

A. Gharsallaoui, Food Res. Int. 40 (2007) 1107(https://doi. org/10. 1016/j. foodres. 2007. 07. 004)

R. R. Esfahani, H. Jun, S. Rahmani, A. Miller, J. Lahann, ACS. Omega 30 (2017) 2839

(https://doi. org/10. 1021/acsomega. 7b00570)

B. Gomez, F. J. Barba, R. Domínguez, P. Putnik, D. B. Kovacevic, M. Pateiro, F. Toldra, J. M. Lorenzo, Trends Food Sci. Tech. 82 (2018) 135 (https://doi. org/10. 1016/j. tifs. 2018. 10. 006)

G. Ozkan, P. Franco, I. De Marco, J. Xiao, E. Capanoglu, Food Chem. 272 (2019) 494

(https://doi. org/10. 1016/j. foodchem. 2018. 07. 205)

G. Orive, E. Santos, J. L. Pedraz, R. M. Hernandez, Adv. Drug Deliver Rev. 67-68 (2014) 3 (https://doi. org/10. 1016/j. addr. 2013. 07. 009)

L. Zhao, J. Luo, H. Wang, G. Song, G. Tang, Appl. Therm. Eng. 99 (2016) 495

(http://dx. doi. org/10. 1016%2Fj. applthermaleng. 2015. 12. 111)

A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Ind. Crop. Prod. 42 (2013) 469

(https://doi. org/10. 1016/j. indcrop. 2012. 06. 035)

B. N. Estevinho, F. Rocha, Application of Biopolymers in Microencapsulation Processes, Biopolymers for Food Design, Handbook of Food Bioengineering, Elsevier, 2018, p. 191 (ISBN: 9780128115015)

T. A. Comunian, C. S. Favaro-Trindade, Food Hydrocolloid. 61 (2016) 442

(https://doi. org/10. 1016/j. foodhyd. 2016. 06. 003)

I. J. Joye, D. J. McClements, Curr. Opin. Colloid. In. 19 (2014) 417

(https://doi. org/10. 1016/j. cocis. 2014. 07. 002)

G. K. Kouassi, V. Gogineni, T. Ahmad, N. M. Gowda, M. S. Boley, N. Koissi, Nano/Mi¬croencapsulation of Functional Ingredients and Drugs into Biopolymer Matrices: A Study of Stability and Controlled Release. Advances in Applied Nanotechnology for Agriculture; Б. Park, М. Appell (Eds.) ACS Symposium Series 1143 (2013) pp. 221–234.

C. Schmitt, C. Sanchez, S. Desobry-Banon, J. Hardy, Crit. Rev. Food Sci. 38 (1998) 689

(https://doi. org/10. 1080/10408699891274354)

R. Khiari, N. Meksi, M. F. Mhenni, M. N. Belgacem, E. Mauret, Fiber. Polym. 12 (2011) 587 (https://doi. org/10. 1007/s12221-011-0587-1)

S. Mansouri, R. Khiari, F. Bettaieb, A. El-Gendy, M. F. Mhenni, J. Polym. Environ. 23 (2015) 190 (https://doi. org/10. 1007/s10924-014-0691-6)

I. Moussa, R. Khiari, A. Moussa, M. N. Belgacem, M. F. Mhenni, Fiber. Polym. 20 (2019) 933 (https://doi. org/10. 1007/s12221-019-8665-x)

L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sanchez, R. Katthain, Food Hydrocolloid. 14 (2000) 417 (https://doi. org/10. 1016/S0268-005X(00)00015-1)

C. Sáenz, E. Sepúlveda, B. Matsuhiro, J. Arid Environ. 57 (2004) 275

(https://doi. org/10. 1016/S0140-1963(03)00106-X)

I. Sanchez-Ortega, B. E. Garcia-Almendarez, E. M. Santos-Lopez, L. R. Reyes-Gonzalez, C. Regalado, Food Hydrocolloid. 52 (2016) 906 (https://doi. org/10. 1016/j. foodhyd. 2015. 09. 004)

A. Bernardino-Nicanor, E. N. Hinojosa-Hernandez, J. M. S. Juarez-Goiz, J. L. Montanez-Soto, M. E. Ramirez-Ortiz, L. Gonzalez-Cruz, J. Food Sci. Tech. 52 (2015) 343

(https://doi. org/10. 1007/s13197-013-0989-8)

A. K. Nayak, D. Pal, D. R. Pany, B. Mohanty, J. Adv. Pharm. Technol. Res. 1 (2010) 338

(https://dx. doi. org/10. 4103%2F0110-5558. 72430)

F. Mannai, M. Ammar, J. G. Yanez, E. Elaloui, Y. Moussaoui, J. Polym. Environ. 26 (2018) 798 (https://doi. org/10. 1007/s10924-017-0968-7)

E. K. Bae, S. J. Lee, J. Microencapsul. 25 (2008) 549 (https://doi. org/10. 1080/02652040802075682)

H. C. F. Carneiro, R. V. Tonon, C. R. F. Grosso, M. D. Hubinger, J. Food Eng. 115 (2013) 443 (https://doi. org/10. 1016/j. jfoodeng. 2012. 03. 033)

N. Bayar, M. Kriaa, R. Kammoun, Int. J. Biol. Macromol. 92 (2016) 441

(https://doi. org/10. 1016/j. ijbiomac. 2016. 07. 042)

N. Bayar, T. Bouallegue, M. Achour, M. Kriaa, R. Kammoun, A. Bougatef, Food Chem. 235 (2017) 275 (https://doi. org/10. 1016/j. foodchem. 2017. 05. 029)

O. Ishurd, F. Zgheel, M. Elghazoun, M. Elmabruk, A. Kermagi, J. F. Kennedy, C. J. Knill, Carbohyd. Polym. 82 (2010) 848 (https://doi. org/10. 1016/j. carbpol. 2010. 06. 006)

H. Zeng, S. Miao, Y. Zhang, S. Lin, Y. Jian, Y. Tian, B. Zheng, Food Hydrocolloid. 52 (2016) 126 (https://doi. org/10. 1016/j. foodhyd. 2015. 05. 028)

M. M. Zhao, N. Yang, B. Yang, Y. Jiang, G. Zhang, Food Chem. 105 (2007) 1480

(https://doi. org/10. 1016/j. foodchem. 2007. 05. 031)

J. L. Rivera-Corona, F. Rodríguez-Gonzalez, R. Rendon-Villalobos, E. García-Hernandez, J. Solorza-Feria, LWT - Food Sci. Technol. 59 (2014) 806

(https://doi. org/10. 1016/j. lwt. 2014. 06. 011)

M. C. Otálora, J. A. G. Castaño, A. Wilches-Torres, LWT - Food Sci. Technol. 112 (2019) 108234 (https://doi. org/10. 1016/j. lwt. 2019. 06. 001)

V. E. Manhivi, S. Venter, E. O. Amonsou, T. Kudanga, Carbohyd. Polym. 195 (2018) 163

(https://doi. org/10. 1016/j. carbpol. 2018. 04. 062)

R. Gheribi, L. Puchot, P. Verge, N. Jaoued-Grayaa, M. Mezni, Y. Habibi, K. Khwaldia, Carbohyd. Polym. 190 (2018) 204 (https://doi. org/10. 1016/j. carbpol. 2018. 02. 085)

Q. Guo, S. W. Cui, Q. Wang, X. Hu, Q. Guo, K. Ji, R. Yada, Carbohyd. Polym. 86 (2011) 831 (https://doi. org/10. 1016/j. carbpol. 2011. 05. 034)

Y. L. Han, J. Gao, Y. Y. Yin, Z. Y. Jin, X. M. Xu, H. Q. Chen, Carbohyd. Polym. 151 (2016) 381 (https://doi. org/10. 1016/j. carbpol. 2016. 05. 085)

F. Mannai, M. Ammar, J. G. Yanez, E. Elaloui, Y. Moussaoui, Cellulose 23 (2016) 2061

(https://doi. org/10. 1007/s10570-016-0899-9)

A. Du Toit, M. De Wit, A. Hugo, Molecules 23 (2018) 916

(https://doi. org/10. 3390/molecules23040916)

J. Y. Yin, S. P. Nie, J. Li, C. Li, S. W. Cui, M. Y. Xie, J. Agr. Food Chem. 60 (2012) 7981

(https://doi. org/10. 1021/jf302052t)

H. Guo, X. Zhao, J. Microencapsul. 25 (2008) 221(https://doi. org/10. 1080/02652040701861828)

J. C. Roy, F. Salaün, S. Giraud, A. Ferri, J. Guan, Carbohyd. Polym. 173 (2017) 202

(https://doi. org/10. 1016/j. carbpol. 2017. 06. 001)

H. Zhang, X. Wang, Sol. Energy Mat. Sol. Cells 93 (2009) 1366

(https://doi. org/10. 1016/j. solmat. 2009. 02. 021)




DOI: https://doi.org/10.2298/JSC200229033E

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)