The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component

Biljana S. Đorđević, Dragan Z. Troter, Vlada B. Veljković, Mirjana Lj. Kijevčanin, Ivona R. Radović, Zoran B. Todorović


Different deep eutectic solvents (DESs) of triethanolamine (TEOA) and oxalic acid (OA), glacial acetic acid (AA), L-(+)-lactic acid (LA), oleic acid (OLA), glycerol (G), ethylene glycol (EG), propylene glycol (PEG), choline chloride (ChCl) or 1,3-dimethylurea (DMU) were prepared and characterized re­garding their physicochemical (density, viscosity, electrical conductivity, refract­tive index, coefficient of volume expansion, molecular volume, lattice energy, and heat capacity) properties over the temperature range of 293.15-363.15 K at 101.325 kPa. For all tested DESs, the density, viscosity and refractive index decreased with increasing the temperature while the electrical conductivity increased. Those temperature dependence for viscosity and electrical conducti­vity are described by the Vogel-Tamman-Fulcher equations. The viscosity and molar conductivity, which exhibited a linear behavior, were correlated by the fractional Walden rule. Besides, the Fourier transform infrared spectroscopy (FTIR) was used to study the functional groups of these DESs while thermo­gra­vimetric analysis (TGA) and differential scanning calorimetry (DSC) provided the information about their stability. The tested DESs of TEOA possess desirable properties for use in various industrial processes, such as extractions, separations, chemical technology and biotechnology.


DESs; density; viscosity; conductivity; refractive index

Full Text:

PDF (2,082 kB)


A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 1 (2003) 70 (

K–H. Kang, D–K. Lee, J. Ind. Eng. Chem. 20 (2014) 2580 (

A. Kumar, P. Kumar, M. S. Aathira, D. P. Singh, B. Behera, S. L. Jain, J. Ind. Eng. Chem. 61 (2018) 381 (

H. Shekaari, M. T. Zafarani-Moattar, B. Mohammadi, Fluid Phase Equilib. 484 (2019) 38 (

I. Adeyemi, M. R. M. Abu-Zahra, I. Alnashef, Energy Procedia 105 (2017) 1394 (

F. S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Fluid Phase Equilib. 448 (2017) 30 (

S. Sarmad, J.-P. Mikkola, X. Ji, ChemSusChem 10 (2016) 324 (

S. E. E. Warrag, C. J. Peters, M. C. Kroon, Curr. Opin. Green Sustain. Chem. 5 (2017) 55 (

Z. Zhao, X. Chen, M. F. Ali, A. A. Abdeltawab, S. M. Yakout, G. Yu, Bioresour. Technol. 263 (2018) 325 (

A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 15 (2013) 20054 (doi:10.1039/c3cp53406e)

L. Vieira, R. Schennach, B Gollas, Electrochim. Acta 197 (2016) 344–352. (doi:10.1016/j.electacta.2015.11.030)

L. Bahadori, M. H. Chakrabarti, F. S. Mjalli, I. M. AlNashef, N. S. A. Manan, M. A. Hashim, Electrochim. Acta 113 (2013) 205 (

V. Constantin, A. K. Adya, A.-M. Popescu, Fluid Phase Equilib. 395 (2015) 58 (

F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liq. 218 (2016) 301 (

B. Đorđević, Z. Todorović, D. Troter, Lj. Stanojević, V. Veljković, Advan. Technol. 7 (2018) 5 (

K. R. Siongco, R. B. Leron, M.-H. Li, J. Chem. Thermodyn. 65 (2013) 65 (

B. Jibril, F. Mjalli, J. Naser, Z. Gano, J. of Mol. Liq. 199 (2014) 462 (

D. Z. Troter, Z. B. Todorović, D. R. Đokić–Stojanović, B. S. Đordević, V. M. Todorović, S. S. Konstantinović, V. B. Veljković, J. Serb. Chem. Soc. 82 (2017) 1039 (

D. J. Ramón, G. Guillena, Deep Eutectic Solvents: Synthesis, Properties, and Applications, John Wiley & Sons, 2020, pp. 1-21.

R. K. Ibrahim, M. Hayyan, M. A. AlSaadi S. Ibrahim, A. Hayyan, M. A. Hashim, J. Mol. Liq. 276 (2019) 794 (

M. Hayyan, T. Aissaoui, M. A. Hashim, M. A. H. AlSaadi, A. Hayyan, J. Taiwan Inst. Chem. Eng. 50 (2015) 24 (

A. Arslanoğlu, M. Sert, Fuel 258 (2019) 116142 (

A. Hayyan, F. S. Mjalli, I. M. Al–Nashef, T. Al–Wahaibi, Y. M. Al–Wahaibi, M. A. Hashim, Thermochim. Acta 541 (2012) 70 (

M. K. AlOmar, M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan, M. A. Hashim, J. Mol. Liq. 215 (2016) 98 (

G. Murshid, F. S. Mjalli, J. Naser, S. Al-Zakwani, A. Hayyan, Phys. Chem. Liq. 57 (2018) 1 (

L. Glasser, J. Solid State Chem. 206 (2013) 139 (

W. M. Haynes, CRC Handbook of chemistry and physics, A ready reference book ofchemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013, pp. 12–21

A. Basaiahgari, S. Panda, R. L. Gardas, J. Chem. Eng. 63 (2018) 2613 (

C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, I. M. Marrucho, ACS Sustain. Chem. Eng. 2 (2014) 2416 (

T. Y. Wu, S.–G. Su, Y. C. Lin, H. P. Wang, M. W. Lin, S. T. Gung, I. W. Sun, Electrochim. Acta 56 (2010) 853 (

M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 125 (2003) 15411 (


Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)