The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component

Main Article Content

Biljana S. Đorđević
Dragan Z. Troter
https://orcid.org/0000-0001-6340-5476
Vlada B. Veljković
https://orcid.org/0000-0002-1671-2892
Mirjana Lj. Kijevčanin
https://orcid.org/0000-0001-7126-3965
Ivona R. Radović
https://orcid.org/0000-0002-2726-1564
Zoran B. Todorović
https://orcid.org/0000-0001-5761-2217

Abstract

Different deep eutectic solvents (DESs) of triethanolamine (TEOA) and oxalic acid (OA), glacial acetic acid (AA), l-(+)-lactic acid (LA), oleic acid (OLA), glycerol (G), ethylene glycol (EG), propylene glycol (PEG), chol­ine chloride (ChCl) or 1,3-dimethylurea (DMU) were prepared and charac­ter­ized re­garding their physicochemical (density, viscosity, electrical conduct­ivity, refractive index, coefficient of volume expansion, molecular volume, lattice energy and heat capacity) properties over the temperature range of 293.15–363.15 K at 101.325 kPa. For all tested DESs, the density, viscosity and refractive index decreased with rising temperature, while the electrical conductivity increased. The temperature dependence of viscosity and electrical conducti­vity are described by the Vogel–Tamman–Fulcher equations. The vis­cosity and molar conductivity, which exhibited a linear behaviour, were correl­ated by the fractional Walden rule. Besides, the Fourier transform infrared spectroscopy (FTIR) was used to study the functional groups of these DESs while thermo­gra­vimetric analysis (TGA) and differential scanning calorimetry (DSC) provided the information about their stability. The tested DESs of TEOA possess desirable properties for use in various industrial processes, such as extractions, separations, chemical technology and biotechnology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. S. Đorđević, D. Z. Troter, V. B. Veljković, M. L. Kijevčanin, I. R. Radović, and Z. B. Todorović, “The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1303–1315, Oct. 2020.
Section
Physical Chemistry

References

A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 1 (2003) 70 (https://doi.org/10.1039/b210714g)

K-H. Kang, D-K. Lee, J. Ind. Eng. Chem. 20 (2014) 2580 (https://doi.org/10.1016/j.jiec.2013.10.044)

A. Kumar, P. Kumar, M. S. Aathira, D. P. Singh, B. Behera, S. L. Jain, J. Ind. Eng. Chem. 61 (2018) 381 (https://doi.org/10.1016/j.jiec.2017.12.037)

H. Shekaari, M. T. Zafarani-Moattar, B. Mohammadi, Fluid Phase Equilib. 484 (2019) 38 (https://doi.org/10.1016/j.fluid.2018.11.025)

I. Adeyemi, M. R. M. Abu-Zahra, I. Alnashef, Energy Procedia 105 (2017) 1394 (https://doi.org/10.1016/j.egypro.2017.03.519)

F. S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Fluid Phase Equilib. 448 (2017) 30 (https://doi.org/10.1016/j.fluid.2017.03.008)

S. Sarmad, J.-P. Mikkola, X. Ji, ChemSusChem 10 (2016) 324 (https://doi.org/10.1002/cssc.201600987)

S. E. E. Warrag, C. J. Peters, M. C. Kroon, Curr. Opin. Green Sustain. Chem. 5 (2017) 55 (https://doi.org/10.1016/j.cogsc.2017.03.013)

Z. Zhao, X. Chen, M. F. Ali, A. A. Abdeltawab, S. M. Yakout, G. Yu, Bioresour. Technol. 263 (2018) 325 (https://doi.org/10.1016/j.biortech.2018.05.016)

A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 15 (2013) 20054 (doi:10.1039/c3cp53406e)

L. Vieira, R. Schennach, B Gollas, Electrochim. Acta 197 (2016) 344 (doi:10.1016/j.electacta.2015.11.030)

L. Bahadori, M. H. Chakrabarti, F. S. Mjalli, I. M. AlNashef, N. S. A. Manan, M. A. Hashim, Electrochim. Acta 113 (2013) 205 (https://doi.org/10.1016/j.electacta.2013.09.102)

V. Constantin, A. K. Adya, A.-M. Popescu, Fluid Phase Equilib. 395 (2015) 58 (https://doi.org/10.1016/j.fluid.2015.03.025)

F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liq. 218 (2016) 301 (https://doi.org/10.1016/j.molliq.2016.02.062)

B. Đorđević, Z. Todorović, D. Troter, Lj. Stanojević, V. Veljković, Adv. Technol. 7 (2018) 5 (https://doi.org/10.5937/SavTeh1802005D)

K. R. Siongco, R. B. Leron, M.-H. Li, J. Chem. Thermodyn. 65 (2013) 65 (https://doi.org/10.1016/j.jct.2013.05.041)

B. Jibril, F. Mjalli, J. Naser, Z. Gano, J. Mol. Liq. 199 (2014) 462 (https://doi.org/10.1016/j.molliq.2014.08.004)

D. Z. Troter, Z. B. Todorović, D. R. Đokić-Stojanović, B. S. Đordević, V. M. Todorović, S. S. Konstantinović, V. B. Veljković, J. Serb. Chem. Soc. 82 (2017) 1039 (doi.org/10.2298/JSC170225065T)

D. J. Ramón, G. Guillena, Deep Eutectic Solvents: Synthesis, Properties, and Applications, John Wiley & Sons, New York, 2020, pp. 1–21

R. K. Ibrahim, M. Hayyan, M. A. AlSaadi S. Ibrahim, A. Hayyan, M. A. Hashim, J. Mol. Liq. 276 (2019) 794 (https://doi.org/10.1016/j.molliq.2018.12.032)

M. Hayyan, T. Aissaoui, M. A. Hashim, M. A. H. AlSaadi, A. Hayyan, J. Taiwan Inst. Chem. Eng. 50 (2015) 24 (https://doi.org/10.1016/j.jtice.2015.03.001)

A. Arslanoğlu, M. Sert, Fuel 258 (2019) 116142 (https://doi.org/10.1016/j.fuel.2019.116142)

A. Hayyan, F. S. Mjalli, I. M. Al-Nashef, T. Al-Wahaibi, Y. M. Al-Wahaibi, M. A. Hashim, Thermochim. Acta 541 (2012) 70 (https://doi.org/10.1016/j.tca.2012.04.030)

M. K. AlOmar, M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan, M. A. Hashim, J. Mol. Liq. 215 (2016) 98 (https://doi.org/10.1016/j.molliq.2015.11.032)

G. Murshid, F. S. Mjalli, J. Naser, S. Al-Zakwani, A. Hayyan, Phys. Chem. Liq. 57 (2018) 1 (https://doi.org/10.1080/00319104.2018.1491043)

L. Glasser, J. Solid State Chem. 206 (2013) 139 (https://doi.org/10.1016/j.jssc.2013.08.008)

W. M. Haynes, CRC Handbook of chemistry and physics, A ready reference book ofchemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013, pp. 12–21

A. Basaiahgari, S. Panda, R. L. Gardas, J. Chem. Eng. 63 (2018) 2613 (https://doi.org/10.1021/acs.jced.8b00213)

C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, I. M. Marrucho, ACS Sustain. Chem. Eng. 2 (2014) 2416 (https://doi.org/10.1021/sc500439w)

T. Y. Wu, S.–G. Su, Y. C. Lin, H. P. Wang, M. W. Lin, S. T. Gung, I. W. Sun, Electrochim. Acta 56 (2010) 853 (https://doi.org/10.1016/j.electacta.2010.09.084)

M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 125 (2003) 15411 (https://doi.org/10.1021/ja035783d).

Most read articles by the same author(s)