The physicochemical properties of the deep eutectic solvents with triethanolamine as a major component
Main Article Content
Abstract
Different deep eutectic solvents (DESs) of triethanolamine (TEOA) and oxalic acid (OA), glacial acetic acid (AA), l-(+)-lactic acid (LA), oleic acid (OLA), glycerol (G), ethylene glycol (EG), propylene glycol (PEG), choline chloride (ChCl) or 1,3-dimethylurea (DMU) were prepared and characterized regarding their physicochemical (density, viscosity, electrical conductivity, refractive index, coefficient of volume expansion, molecular volume, lattice energy and heat capacity) properties over the temperature range of 293.15–363.15 K at 101.325 kPa. For all tested DESs, the density, viscosity and refractive index decreased with rising temperature, while the electrical conductivity increased. The temperature dependence of viscosity and electrical conductivity are described by the Vogel–Tamman–Fulcher equations. The viscosity and molar conductivity, which exhibited a linear behaviour, were correlated by the fractional Walden rule. Besides, the Fourier transform infrared spectroscopy (FTIR) was used to study the functional groups of these DESs while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) provided the information about their stability. The tested DESs of TEOA possess desirable properties for use in various industrial processes, such as extractions, separations, chemical technology and biotechnology.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 1 (2003) 70 (https://doi.org/10.1039/b210714g)
K-H. Kang, D-K. Lee, J. Ind. Eng. Chem. 20 (2014) 2580 (https://doi.org/10.1016/j.jiec.2013.10.044)
A. Kumar, P. Kumar, M. S. Aathira, D. P. Singh, B. Behera, S. L. Jain, J. Ind. Eng. Chem. 61 (2018) 381 (https://doi.org/10.1016/j.jiec.2017.12.037)
H. Shekaari, M. T. Zafarani-Moattar, B. Mohammadi, Fluid Phase Equilib. 484 (2019) 38 (https://doi.org/10.1016/j.fluid.2018.11.025)
I. Adeyemi, M. R. M. Abu-Zahra, I. Alnashef, Energy Procedia 105 (2017) 1394 (https://doi.org/10.1016/j.egypro.2017.03.519)
F. S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Fluid Phase Equilib. 448 (2017) 30 (https://doi.org/10.1016/j.fluid.2017.03.008)
S. Sarmad, J.-P. Mikkola, X. Ji, ChemSusChem 10 (2016) 324 (https://doi.org/10.1002/cssc.201600987)
S. E. E. Warrag, C. J. Peters, M. C. Kroon, Curr. Opin. Green Sustain. Chem. 5 (2017) 55 (https://doi.org/10.1016/j.cogsc.2017.03.013)
Z. Zhao, X. Chen, M. F. Ali, A. A. Abdeltawab, S. M. Yakout, G. Yu, Bioresour. Technol. 263 (2018) 325 (https://doi.org/10.1016/j.biortech.2018.05.016)
A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 15 (2013) 20054 (doi:10.1039/c3cp53406e)
L. Vieira, R. Schennach, B Gollas, Electrochim. Acta 197 (2016) 344 (doi:10.1016/j.electacta.2015.11.030)
L. Bahadori, M. H. Chakrabarti, F. S. Mjalli, I. M. AlNashef, N. S. A. Manan, M. A. Hashim, Electrochim. Acta 113 (2013) 205 (https://doi.org/10.1016/j.electacta.2013.09.102)
V. Constantin, A. K. Adya, A.-M. Popescu, Fluid Phase Equilib. 395 (2015) 58 (https://doi.org/10.1016/j.fluid.2015.03.025)
F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liq. 218 (2016) 301 (https://doi.org/10.1016/j.molliq.2016.02.062)
B. Đorđević, Z. Todorović, D. Troter, Lj. Stanojević, V. Veljković, Adv. Technol. 7 (2018) 5 (https://doi.org/10.5937/SavTeh1802005D)
K. R. Siongco, R. B. Leron, M.-H. Li, J. Chem. Thermodyn. 65 (2013) 65 (https://doi.org/10.1016/j.jct.2013.05.041)
B. Jibril, F. Mjalli, J. Naser, Z. Gano, J. Mol. Liq. 199 (2014) 462 (https://doi.org/10.1016/j.molliq.2014.08.004)
D. Z. Troter, Z. B. Todorović, D. R. Đokić-Stojanović, B. S. Đordević, V. M. Todorović, S. S. Konstantinović, V. B. Veljković, J. Serb. Chem. Soc. 82 (2017) 1039 (doi.org/10.2298/JSC170225065T)
D. J. Ramón, G. Guillena, Deep Eutectic Solvents: Synthesis, Properties, and Applications, John Wiley & Sons, New York, 2020, pp. 1–21
R. K. Ibrahim, M. Hayyan, M. A. AlSaadi S. Ibrahim, A. Hayyan, M. A. Hashim, J. Mol. Liq. 276 (2019) 794 (https://doi.org/10.1016/j.molliq.2018.12.032)
M. Hayyan, T. Aissaoui, M. A. Hashim, M. A. H. AlSaadi, A. Hayyan, J. Taiwan Inst. Chem. Eng. 50 (2015) 24 (https://doi.org/10.1016/j.jtice.2015.03.001)
A. Arslanoğlu, M. Sert, Fuel 258 (2019) 116142 (https://doi.org/10.1016/j.fuel.2019.116142)
A. Hayyan, F. S. Mjalli, I. M. Al-Nashef, T. Al-Wahaibi, Y. M. Al-Wahaibi, M. A. Hashim, Thermochim. Acta 541 (2012) 70 (https://doi.org/10.1016/j.tca.2012.04.030)
M. K. AlOmar, M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan, M. A. Hashim, J. Mol. Liq. 215 (2016) 98 (https://doi.org/10.1016/j.molliq.2015.11.032)
G. Murshid, F. S. Mjalli, J. Naser, S. Al-Zakwani, A. Hayyan, Phys. Chem. Liq. 57 (2018) 1 (https://doi.org/10.1080/00319104.2018.1491043)
L. Glasser, J. Solid State Chem. 206 (2013) 139 (https://doi.org/10.1016/j.jssc.2013.08.008)
W. M. Haynes, CRC Handbook of chemistry and physics, A ready reference book ofchemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013, pp. 12–21
A. Basaiahgari, S. Panda, R. L. Gardas, J. Chem. Eng. 63 (2018) 2613 (https://doi.org/10.1021/acs.jced.8b00213)
C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, I. M. Marrucho, ACS Sustain. Chem. Eng. 2 (2014) 2416 (https://doi.org/10.1021/sc500439w)
T. Y. Wu, S.–G. Su, Y. C. Lin, H. P. Wang, M. W. Lin, S. T. Gung, I. W. Sun, Electrochim. Acta 56 (2010) 853 (https://doi.org/10.1016/j.electacta.2010.09.084)
M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 125 (2003) 15411 (https://doi.org/10.1021/ja035783d).