Study on charge mobility of hexathiapentacene and its selenium analogs

Su-Qin Zhou, Qi-Ying Xia, Meng Liang, Xuehai Ju

Abstract


The relationship between molecular geometries, crystal structures and charge mobilities of hexathiapentacene (HTP) and its three derivatives (2Se‑HTP, 4Se-HTP, 6Se-HTP) were studied with density functional theory combined with hopping mechanism in the molecular and crystal level. The effect of Se substitution on the charge mobility was discussed. The calculated results showed that the derivatives exhibit good planarity and the molecular geometries have little variation during the charge transfer process. The electron mobility is 1.20 cm2 V‒1 S‒1 for HTP and 2.30 cm2 V‒1 S‒1 for 6Se-HTP, which are much larger than the corresponding hole ones, indicating that HTP and 6Se-HTP are good candidates for n-type organic semiconductor. However, 2Se-HTP and 4Se‑HTP have comparable hole and electron mobilities and are suitable for ambipolar semiconductor.


Keywords


Selenium substitution; organic semiconductor; density functional theory; hopping mechanism; ambipolar

Full Text:

PDF (1,300 kB)

References


H. Usta, A. Facchetti, T. J. Marks, Acc. Chem. Res. 44 (2011) 501 (https://dx.doi.org/10.1021/ar200006r)

X. Wang, K. C. Lau, J. Phys. Chem. C 116 (2012) 22749 (https://dx.doi.org/10.1021/jp309226z)

A. Datta and S. K. Pati, J. Phys. Chem. C 111 (2007) 4487 (https://dx.doi.org/10.1021/jp070609n)

N. Z. Prlainovic, M. P. Rancic, I. Stojiljkovic, J. B. Nikolic, S. Z. Drmanic, I. Ajaj, A. D. Marinkovic, J. Serb. Chem. Soc. 83 (2018) 139 (https://doi.org/10.2298/JSC170408003P)

A. Tripathi, C. Prabhakar, J. Chin. Chem. Soc. 65 (2018) 918 (https://dx.doi.org/10.1002/jccs.201700448)

Y. Song, C. Di, X. Yang, J. Am. Chem. Soc. 128 (2007) 15940 (https://dx.doi.org/10.1021/ja064726s)

M. Melucci, L. Favaretto, M. Zambianchi, Chem. Mater. 25 (2013) 668 (https://dx.doi.org/10.1021/cm303224a)

H. W. Lin, W. Y. Lee, C. Lu, Polym. Chem. 3 (2012) 767 (https://dx.doi.org/10.1039/c2py00583b)

T. Yamamoto, K. Takimiya, J. Am. Chem. Soc. 129 (2007) 2224 (https://dx.doi.org/10.1021/ja068429z)

A. L. Briseno, S. C. B. Mannsfeld, E. Formo, J. Mater. Chem. 18 (2008) 5395 (https://dx.doi.org/10.1039/b809228c)

A. Bedi, S. P. Senanayak, K. S. Narayan, S. S. Zade, Macromolecules 46 (2013) 5943 (https://dx.doi.org/10.1021/ma4008219)

A. L. Briseno, S. C. B. Mannsfeld, X. Lu, Y. Xiong, S. A. Jenekhe, Z. Bao, Y. Xia, Nano Lett. 7 (2007) 668 (https://dx.doi.org/10.1021/nl0627036)

A. L. Briseno, Q. Miao, M. M. Ling, J. Am. Chem. Soc. 128 (2007) 15576 (https://dx.doi.org/10.1021/ja066088j)

K. Chaitanya, X. H. Ju, B. M. Heron, RSC Adv. 5 (2015) 3978 (https://dx.doi.org/10.1039/c4ra09914a)

O. Castellano, R. Gimon, H. Soscun, Energy Fuel 25 (2011) 2526 (https://dx.doi.org/10.1021/ef101471t)

Y. Hong, Y. R. Liu, H. Wen, RSC Adv. 8 (2018) 7225 (https://dx.doi.org/10.1039/c7ra13670f)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc., Wallingford CT, 2009

A. Krishtal, K. Vannomeslaeghe, A. Olasz, J. Chem. Phys. 130 (2009) 174101 (https://dx.doi.org/10.1063/1.3126248)

Y. Hu, K. Chaitanya, J. Yin, X. H. Ju, J. Mater. Sci. 51 (2016) 6235 (https://dx.doi.org/10.1007/s10853-016-9921-8)

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Cond. Matt. 14 (2002) 2717 (https://dx.doi.org/10.1088/0953-8984/14/11/301)

M. D. Hanwell, T. A. Madison, G. R. Hutchison, J. Phys. Chem. C 114 (2010) 20417 (https://dx.doi.org/10.1021/jp104416a)

S. Mohakud, A. P. Andrews, S. K. Pati, J. Phys. Chem. C 114 (2010) 20436 (https://dx.doi.org/10.1021/jp1047503)

W. Q. Deng and W. A. Goddard III, J. Phys. Chem. B 108 (2004) 8614 (https://dx.doi.org/10.1021/jp0495848)

J. Yin, K. Chaitanya, X. H. Ju, RSC Adv. 5 (2015) 65192 (https://dx.doi.org/10.1039/C5RA06418J)

J. M. Hancock, A. P. Gifford, R. D. Champion, Macromolecules 41 (2008) 3588 (https://dx.doi.org/10.1021/ma800304m)

J. Yin, K. Chaitanya, X. H. Ju, Can. J. Chem. 93 (2015) 740 (https://dx.doi.org/10.1139/cjc-2014-0569)

M. Liang, J. Yin, K. Chaitanya, X. H. Ju, J. Theor. Comput. Chem. 15 (2016) 1650027 (https://dx.doi.org/10.1142/S0219633616500279)




DOI: https://doi.org/10.2298/JSC200511045Z

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)