A simple computational approach for pKa calculation of organosulfur compounds

Authors

  • Syed Tahir Ali Federal Urdu University of Arts Science and Technology, Block #9, Gulshan-e-Iqbal, University Road, Karachi https://orcid.org/0000-0003-3540-2360
  • Aneesa Choudhary Federal Urdu University of Arts Science and Technology, Karachi, Pakistan
  • Majid Khalil Syed Bosch Pharmaceutical Private Limited, Plot No. 209, Sector 23, Korangi Industrial Area, Karachi, Pakistan
  • Arif Zubair Federal Urdu University of Arts Science and Technology, Karachi, Pakistan

DOI:

https://doi.org/10.2298/JSC200518042A

Keywords:

DFT method, Diffuse function basis set, DMSO solvent

Abstract

The present work is related to predicting the pKa values of organosulfur compounds through Density Functional Theory (DFT). In this study 22 organo­sulfur compounds have been considered to calculate theoretical pKa values. Main emphasis has been given on the substitution of different groups on the Sulfur atom. The computations were performed in the presence of Dimethyl sulfoxide (DMSO) as solvent. Experimentally the order of increase of acidity is; Sulfides <
< Sulfoxides < Sulfones. Our computed pKa values also follow the same order. The theoretical pKa values are computed using the DFT method B3LYP, with the basis sets 6-31G(d), 6-31+G(d,p) and IEFPCM bulk solvation model. The ma­jority of computed pKa values are in excellent agreement with the expe­ri­mental ones through the diffuse function basis set. Hence this computational approach, B3LYP/6-31+G(d,p)/IEFPCM, could be utilized to predict the pKa values of these types of organosulfur compounds.

Author Biographies

Syed Tahir Ali, Federal Urdu University of Arts Science and Technology, Block #9, Gulshan-e-Iqbal, University Road, Karachi

Chemistry, Assistant Professor

Aneesa Choudhary, Federal Urdu University of Arts Science and Technology, Karachi, Pakistan

Chemistry, MS student

Majid Khalil Syed, Bosch Pharmaceutical Private Limited, Plot No. 209, Sector 23, Korangi Industrial Area, Karachi, Pakistan

Quality Control, Senior QC Analyst

Arif Zubair, Federal Urdu University of Arts Science and Technology, Karachi, Pakistan

Environmental Science, Professor

References

A. Onufriev, D. A. Case, G. M. Ullmann, Biochemistry. 40 (2001) 3413 (https://doi.org/10.1021/bi002740q)

K. S. Alongi, G. C. Shields, Ann. Rep. Comp. Chem. 6 (2010) 113 (https://doi.org/10.1016/S1574-1400(10)06008-1)

G. J. Paul, J. S. Walter, J. Chem. Phy. 83 (1985) 2984 (https://doi.org/10.1063/1.449201)

M. K. Syed, C. Murray, M. Casey, Eur. J. Org. Chem. 25 (2014) 5549 (https://doi.org/10.1002/ejoc.201402584)

M. K. Syed, M. Casey, Eur. J. Org. Chem. 35 (2011) 7207 (https://doi.org/10.1080/09168451.2017.1407235)

B. Cheng, Y. Li, T. Wang, X. Zhang, H. Li, Y. Li, H. Zhai, Chem. Comm. 55 (2019) 14606 (https://doi.org/10.1039/c9cc08326j)

X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Elect. Chem. Ener. Rev. 1 (2018) 239 (https://doi.org/10.1007/s41918-019-00044-4)

S. T. Ali, S. Karamat, J. Kóňa, W. M. F. Fabian, J. Phy. Chem. A. 114 (2010) 12470 (https://doi.org/10.1021/jp102266v)

S. T. Ali, S. Jahangir, S. Karamat, W. M. F Fabian, K. Nawara, J. Kóňa, J. Chem. Theo. Comput. 6 (2010) 1670 (https://doi.org/10.1021/ct9003355)

F. G. Bordwell, Acc. Chem. Resear. 21 (1988) 456 (https://doi.org/10.1021/ar00156a004)

F. G. Bordwell, G. E. Drucker, N. H. Andersen, A. D. Denniston, J. Am. Chem. Soc. 108 (1986) 7310 (https://doi.org/10.1021/ja00283a028)

X. M. Zhang, F. G. Bordwell, J. Am. Chem. Soc. 116 (1994) 968 (https://doi.org/10.1021/ja00082a018)

F. G. Bordwell, X. M. Zhang, J. Am. Chem. Soc. 114 (1992) 7623 (https://doi.org/10.1021/ja00046a003)

R. Dennington, T. A. Keith, J. M. Millam, GaussView 6, Semichem Inc., Shawnee Mission, KS, 2016.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phy. Chem. A. 110 (2006) 2493 (https://doi.org/10.1021/jp055336f)

I. D. Cunningham, K. Bhaila, D. C. Povey, Comp. Theor. Chem. 1019 (2013) 55 (https://doi.org/10.1016/j.comptc.2013.06.031)

J. Ho, M. L. Coote, Theo. Chem. Acc. 125 (2010) 3 (https://doi.org/10.1007/s00214-009-0667-0)

M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, V. C. James, T. R. Tuttle, J. Phy. Chem. A. 102 (1998) 7787 (https://doi.org/10.1021/jp982638r)

Downloads

Published

2020-07-08

How to Cite

[1]
S. T. Ali, A. Choudhary, M. K. Syed, and A. Zubair, “A simple computational approach for pKa calculation of organosulfur compounds”, J. Serb. Chem. Soc., vol. 85, no. 5, p. -, Jul. 2020.

Issue

Section

Theoretical Chemistry