A simple computational approach for pKa calculation of organosulfur compounds

Syed Tahir Ali, Aneesa Choudhary, Majid Khalil Syed, Arif Zubair

Abstract


The present work is related to predicting the pKa values of organosulfur compounds through Density Functional Theory (DFT). In this study 22 organo­sulfur compounds have been considered to calculate theoretical pKa values. Main emphasis has been given on the substitution of different groups on the Sulfur atom. The computations were performed in the presence of Dimethyl sulfoxide (DMSO) as solvent. Experimentally the order of increase of acidity is; Sulfides <
< Sulfoxides < Sulfones. Our computed pKa values also follow the same order. The theoretical pKa values are computed using the DFT method B3LYP, with the basis sets 6-31G(d), 6-31+G(d,p) and IEFPCM bulk solvation model. The ma­jority of computed pKa values are in excellent agreement with the expe­ri­mental ones through the diffuse function basis set. Hence this computational approach, B3LYP/6-31+G(d,p)/IEFPCM, could be utilized to predict the pKa values of these types of organosulfur compounds.


Keywords


DFT method; Diffuse function basis set; DMSO solvent

Full Text:

PDF (633 kB)

References


A. Onufriev, D. A. Case, G. M. Ullmann, Biochemistry. 40 (2001) 3413 (https://doi.org/10.1021/bi002740q)

K. S. Alongi, G. C. Shields, Ann. Rep. Comp. Chem. 6 (2010) 113 (https://doi.org/10.1016/S1574-1400(10)06008-1)

G. J. Paul, J. S. Walter, J. Chem. Phy. 83 (1985) 2984 (https://doi.org/10.1063/1.449201)

M. K. Syed, C. Murray, M. Casey, Eur. J. Org. Chem. 25 (2014) 5549 (https://doi.org/10.1002/ejoc.201402584)

M. K. Syed, M. Casey, Eur. J. Org. Chem. 35 (2011) 7207 (https://doi.org/10.1080/09168451.2017.1407235)

B. Cheng, Y. Li, T. Wang, X. Zhang, H. Li, Y. Li, H. Zhai, Chem. Comm. 55 (2019) 14606 (https://doi.org/10.1039/c9cc08326j)

X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Elect. Chem. Ener. Rev. 1 (2018) 239 (https://doi.org/10.1007/s41918-019-00044-4)

S. T. Ali, S. Karamat, J. Kóňa, W. M. F. Fabian, J. Phy. Chem. A. 114 (2010) 12470 (https://doi.org/10.1021/jp102266v)

S. T. Ali, S. Jahangir, S. Karamat, W. M. F Fabian, K. Nawara, J. Kóňa, J. Chem. Theo. Comput. 6 (2010) 1670 (https://doi.org/10.1021/ct9003355)

F. G. Bordwell, Acc. Chem. Resear. 21 (1988) 456 (https://doi.org/10.1021/ar00156a004)

F. G. Bordwell, G. E. Drucker, N. H. Andersen, A. D. Denniston, J. Am. Chem. Soc. 108 (1986) 7310 (https://doi.org/10.1021/ja00283a028)

X. M. Zhang, F. G. Bordwell, J. Am. Chem. Soc. 116 (1994) 968 (https://doi.org/10.1021/ja00082a018)

F. G. Bordwell, X. M. Zhang, J. Am. Chem. Soc. 114 (1992) 7623 (https://doi.org/10.1021/ja00046a003)

R. Dennington, T. A. Keith, J. M. Millam, GaussView 6, Semichem Inc., Shawnee Mission, KS, 2016.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phy. Chem. A. 110 (2006) 2493 (https://doi.org/10.1021/jp055336f)

I. D. Cunningham, K. Bhaila, D. C. Povey, Comp. Theor. Chem. 1019 (2013) 55 (https://doi.org/10.1016/j.comptc.2013.06.031)

J. Ho, M. L. Coote, Theo. Chem. Acc. 125 (2010) 3 (https://doi.org/10.1007/s00214-009-0667-0)

M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, V. C. James, T. R. Tuttle, J. Phy. Chem. A. 102 (1998) 7787 (https://doi.org/10.1021/jp982638r)




DOI: https://doi.org/10.2298/JSC200518042A

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)