Schiff bases of 1,5-diarylpent-4-ene-1,3-diones and their metal complexes: Synthesis, characterization and fluorescent studies
Main Article Content
Abstract
Four Schiff bases (H2L1 to H2L4) have been synthesized by the condensation between o-aminophenol and unsaturated diketones (1,5-diarylpent-4--ene-1,3-diones). Analytical, IR, 1H NMR and mass spectral data revealed their existence in the imine-enamine form. Dibasic tetradentate coordination of the Schiff bases in their ML complexes [M = Cu(II), Ni(II), Co(II), Zn(II), Cd(II), and Hg(II)] has been established on the basis of physical, analytical and spectral data. The fluorescent studies of H2L4 show that fluorescence emission maxima shift with increase in polarity and hydrogen bonding ability of the solvent. Paramagnetic Cu(II), Ni(II) and Co(II) ions decrease the fluorescence intensity with increase in concentration of the metal ion while diamagnetic Zn(II), Cd(II) and Hg(II) ions have very little influence on the intensity of fluorescence of the Schiff base H2L4 .
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
N. E. Borisova, V. V. Roznyatovskii, M. D. Reshetova, Y. A. Ustynyuk, Russian J. Org. Chem. 41 (2005) 1005 (https://doi.org/10.1007/s11178-005-0285-9)
R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Arch. Appl. Sci. Res. 4 (2012) 2223
G. G. Mohamed, M. M. Omar, A. M. Hindy, Turk. J. Chem. 30 (2006) 361
K. Krishnankutty, P. Sayudevi, M. B. Ummathur, J. Serb. Chem. Soc. 72 (2007) 1075 (https://doi.org/10.2298/JSC0711075K)
P. D. Benny, J. L. Green, H. P. Engelbrecht, C. L. Barnes, S. S. Jurisson, Inorg. Chem. 44 (2005) 2381 (https://doi.org/10.1021/ic048670j)
T. D. Thangadurai, K. Natarajan, Synth. React. Inorg. Met.-Org. Chem. 31 (2000) 549 (https://doi.org/10.1081/SIM-100104786)
N. Raman, Y. Pitchaikaniraja, A. Kulandaisami, Proc. Ind. Acad. Sci. (Chem. Sci). 113 (2001) 183
K. Krishnankutty, M. B. Ummathur, P. Sayudevi, J. Argent. Chem. Soc. 96 (2008) 13
T. J. Saritha, P. Metilda, Int. J. Eng. Trends Appl. 5 (2018) 1
M. Ahmed, M. A. Qadir, M. I. Shafiq, M. Muddassar, Z. Q. Samra, A. Hameed, Arab. J. Chem. 12 (2019) 41 (https://dx.doi.org/10.1016/j.arabjc.2016.11.017)
K. Krishnankutty, V. D. John, Synth. React. Inorg. Met.-Org. Chem. 33 (2003) 343 (https://doi.org/10.1081/SIM-120017791)
J. L. Funk, J. B. Frye, J. N. Oyarzo, H. Zhang, B. N. Timmermann, J. Agric. Food Chem. 58 (2010) 842 (https://doi.org/10.1021/jf9027206)
V. D. John, M. B. Ummathur, K. Krishnankutty, J. Coord. Chem. 66 (2013) 1508 (https://doi.org/10.1080/00958972.2013.784281)
R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Res. J. Chem. Sci. 5 (2015) 40
C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, T. A. Dahl, Photochem. Photobiol. Sci. 59 (1994) 295 (https://doi.org/10.1111/j.1751-1097.1994.tb05037.x)
M. Griesser, V. Pistis, T. Suzuki, N. Tejera, D. A. Pratt, C. Schneider, J. Biol. Chem. 286 (2011) 1114 (https://doi.org/10.1074/jbc.M110.178806)
K.T. Kazantzis, K. Koutsonikoli, B. Mavroidi, M. Zachariadis, P. Alexiou, M. Pelecanou, K. Politopoulos, E. Alexandratou, M. Sagnou, Photochem. Photobiol. Sci. 19 (2020) 193 (https://doi.org/10.1039/C9PP00375D)
E. F. Oliveira, J. V. Tosati, R. Tikekar, A. R. Monteiro, N. Nitin, Postharvest Biol. Tec. 137 (2018) 86 (http://doi.org/10.1016/j.postharvbio.2017.11.014).
L. Nardo, A. Andreoni, M. Masson, T. Haukvik, H. H. Tonnesen, J. Fluoresc. 21 (2011) 627 (https://doi.org/10.1007/s10895-010-0750-x)
R. Ghosh, D. K. Palit, Photochem. Photobiol. Sci. 12 (2013) 987 (https://doi.org/10.1039/C3PP25429A)
M. Paul, P. Venugopalan, K. Krishnankutty, Asian J. Chem. 14 (2002) 1335
M. B. Ummathur, A. Krishnan, M. P. Ukken, J. Iran. Chem. Res. 3 (2010) 71 (http://jicr.iau-arak.ac.ir/article_517487_00fd978bde4e478354207cffc21a5c24.pdf)
M. P. Ukken, M. B. Ummathur, Arch. Appl. Sci. Res. 5 (2013) 247 (https://www.scholarsresearchlibrary.com/articles/synthesis-and-characterization-of-two-conjugated-bdiketones-and-their-metal-complexes.pdf)
L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1980
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1970
A. Lycka, J. Jirman, A. Cee, Mag. Res. Chem. 28 (1990) 408 (https://doi.org/10.1002/mrc.1260280505)
H. Budzikiewicz, C. Djerassi, D. H. Williams, Mass Spectrometry of Organic Compounds, Holden Day, San Francisco, CA, 1967
K. Ray, T. Weyhermüller, F. Neese, K. Wieghardt, Inorg. Chem. 44 (2005) 5345 (https://doi.org/10.1021/ic0507565)
Y. Sasaki, Bull. Inst. Chem. Res., Kyoto Univ. 8 (1980) 187 (http://hdl.handle.net/2433/76881)
K. S. Melha, J. Coord. Chem. 61 (2008) 2053 (https://doi.org/10.1080/00958970701862167)
M. M. Enriquez, M. Fuciman, A. M. LaFountain, N. L. Wagner, R. R. Birge, H. A. Frank, J. Phys. Chem., B 114 (2010) 12416 (https://doi.org/10.1021/jp106113h)
P. H. Bong, Bull. Korean Chem. Soc. 21 (2000) 81
J. H. Chang, Y. M. Choi, Y. K. Shin, Bull. Korean Chem. Soc. 22 (2001) 527
M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 233 (2002) 351 (https://doi.org/10.1016/S0010-8545(02)00034-6)
R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Turk. J. Chem. 37 (2013) 889 (https://doi.org/10.3906/kim-1301-19).