Schiff bases of 1,5-diarylpent-4-ene-1,3-diones and their metal complexes: Synthesis, characterization and fluorescent studies

Muhammed Basheer Ummathur, Radhika Pallikkavil, Krishnannair Krishnankutty

Abstract


Four Schiff bases (H2L1 to H2L4) have been synthesized by the con­densation between o-aminophenol and unsaturated diketones (1,5-diarylpent-4--ene-1,3-diones). Analytical, IR, 1H NMR and mass spectral data revealed their existence in the imine-enamine form. Dibasic tetradentate coordination of the Schiff bases in their ML complexes [M = Cu(II), Ni(II), Co(II), Zn(II), Cd(II), and Hg(II)] has been established on the basis of physical, analytical and spectral data. The fluorescent studies of H2L4 show that fluorescence emission maxima shift with increase in polarity and hydrogen bonding ability of the solvent. Paramagnetic Cu(II), Ni(II) and Co(II) ions decrease the fluorescence intensity with increase in concentration of the metal ion while diamagnetic Zn(II), Cd(II) and Hg(II) ions have very little influence on the intensity of fluorescence of the Schiff base H2L4 .


Keywords


o-aminophenol; imine-enamine form; tetradentate coordination; spectral data.

Full Text:

PDF (893 kB)

References


N. E. Borisova, V. V. Roznyatovskii, M. D. Reshetova, Y. A. Ustynyuk, Russian J. Org. Chem. 41 (2005) 1005 (https://doi.org/10.1007/s11178-005-0285-9)

R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Arch. Appl. Sci. Res. 4 (2012) 2223

G. G. Mohamed, M. M. Omar, A. M. Hindy, Turk. J. Chem. 30 (2006) 361

K. Krishnankutty, P. Sayudevi, M. B. Ummathur, J. Serb. Chem. Soc. 72 (2007) 1075 (https://doi.org/10.2298/JSC0711075K)

P. D. Benny, J. L. Green, H. P. Engelbrecht, C. L. Barnes, S. S. Jurisson, Inorg. Chem. 44 (2005) 2381 (https://doi.org/10.1021/ic048670j)

T. D. Thangadurai, K. Natarajan, Synth. React. Inorg. Met.-Org. Chem. 31 (2000) 549 (https://doi.org/10.1081/SIM-100104786)

N. Raman, Y. Pitchaikaniraja, A. Kulandaisami, Proc. Indian Acad. Sci. (Chem. Sci). 113 (2001) 183

K. Krishnankutty, M. B. Ummathur, P. Sayudevi, J. Argent. Chem. Soc. 96 (2008) 13

T. J. Saritha, P. Metilda, Int. J. Eng. Trends Appl. 5 (2018) 1

M. Ahmed, M. A. Qadir, M. I. Shafiq, M. Muddassar, Z. Q. Samra, A. Hameed, Arabian J. Chem. 12 (2019) 41 (https://dx.doi.org/10.1016/j.arabjc.2016.11.017)

K. Krishnankutty, V. D. John, Synth. React. Inorg. Met.-Org. Chem. 33 (2003) 343 (https://doi.org/10.1081/SIM-120017791)

J. L. Funk, J. B. Frye, J. N. Oyarzo, H. Zhang, B. N. Timmermann, J. Agric. Food Chem. 58 (2010) 842 (https://doi.org/10.1021/jf9027206)

V. D. John, M. B. Ummathur, K. Krishnankutty, J. Coord. Chem. 66 (2013) 1508 (https://doi.org/10.1080/00958972.2013.784281)

R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Res. J. Chem. Sci. 5 (2015) 40

C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, T. A. Dahl, Photochem. Photobiol. Sci. 59 (1994) 295 (https://doi.org/10.1111/j.1751-1097.1994.tb05037.x)

M. Griesser, V. Pistis, T. Suzuki, N. Tejera, D. A. Pratt, C. Schneider, J. Biol. Chem. 286 (2011) 1114 (https://doi.org/10.1074/jbc.M110.178806)

K.T. Kazantzis, K. Koutsonikoli, B. Mavroidi, M. Zachariadis, P. Alexiou, M. Pelecanou, K. Politopoulos, E. Alexandratou, M. Sagnou, Photochem. Photobiol. Sci. 19 (2020) 193 (https://doi.org/10.1039/C9PP00375D)

E. F. Oliveira, J. V. Tosati, R. Tikekar, A. R. Monteiro, N. Nitin, Postharvest Biol. Tec. 137 (2018) 86 (http://doi.org/10.1016/j.postharvbio.2017.11.014).

L. Nardo, A. Andreoni, M. Masson, T. Haukvik, H. H. Tonnesen, J. Fluoresc. 21 (2011) 627 (https://doi.org/10.1007/s10895-010-0750-x)

R. Ghosh, D. K. Palit, Photochem. Photobiol. Sci. 12 (2013) 987 (https://doi.org/10.1039/C3PP25429A)

M. Paul, P. Venugopalan, K. Krishnankutty, Asian J. Chem. 14 (2002) 1335

M. B. Ummathur, A. Krishnan, M. P. Ukken, J. Iran. Chem. Res. 3 (2010) 71 (http://jicr.iau-arak.ac.ir/article_517487_00fd978bde4e478354207cffc21a5c24.pdf)

M. P. Ukken, M. B. Ummathur, Arch. Appl. Sci. Res. 5 (2013) 247 (https://www.scholarsresearchlibrary.com/articles/synthesis-and-characterization-of-two-conjugated-bdiketones-and-their-metal-complexes.pdf)

L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1980

K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1970

A. Lycka, J. Jirman, A. Cee, Mag. Res. Chem. 28 (1990) 408 (https://doi.org/10.1002/mrc.1260280505)

H. Budzikiewicz, C. Djerassi, D. H. Williams, Mass Spectrometry of Organic Compounds, Holden Day, San Francisco, 1967

K. Ray, T. Weyhermüller, F. Neese, K. Wieghardt, Inorg. Chem. 44 (2005) 5345 (https://doi.org/10.1021/ic0507565)

Y. Sasaki, Bull. Inst. Chem. Res., Kyoto Univ. 8 (1980) 187 (http://hdl.handle.net/2433/76881)

K. S. Melha, J. Coord. Chem. 61 (2008) 2053 (https://doi.org/10.1080/00958970701862167)

M. M. Enriquez, M. Fuciman, A. M. LaFountain, N. L. Wagner, R. R. Birge, H. A. Frank, J. Phys. Chem. B. 114 (2010) 12416 (https://doi.org/10.1021/jp106113h)

P. H. Bong, Bull. Korean Chem. Soc. 21 (2000) 81

J. H. Chang, Y. M. Choi, Y. K. Shin, Bull. Korean Chem. Soc. 22 (2001) 527

M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 233 (2002) 351 (https://doi.org/10.1016/S0010-8545(02)00034-6)

R. Pallikkavil, M. B. Ummathur, K. Krishnankutty, Turk. J. Chem. 37 (2013) 889 (https://doi.org/10.3906/kim-1301-19).




DOI: https://doi.org/10.2298/JSC200520062U

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)