Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach

Authors

DOI:

https://doi.org/10.2298/JSC200521044O

Keywords:

Catalyst deactivation, olefins, rate-determining step, scission, first principle, coking

Abstract

The catalyst coking and production of undesired products during the transformation of propane into propylene has been in a critical challenge in the on-purpose approach of propylene production. The mechanism contributing to this challenge was theoretically investigated through the investigation of cracking reaction routes to understanding how to promote the coking of this catalyst. The study carried out employed the use of a DFT and cluster approach in the search for the kinetic and thermodynamic data of the reaction mechanism involved in the process over Cr2O3. The RDS and feasible route that easily promote the production of small hydrocarbons like ethylene, methane, and many others were identified. The study suggests, Cr-site substitution or co-feeding of oxygen, as a way that aids in preventing deep dehydrogenation in the conversion of propane to propylene. This information will help in improving the Cr2O3 catalyst performance and further improve the production yield.

Author Biographies

Toyese Oyegoke, Chemical Engineering Department, Faculty of Engineering, ABU Zaria and 2Laboratoire de Chimie, ENS Lyon, l’Universite de Lyon, 69007, Lyon

Chemical Engineering Department, Lecturer & Research Scholar (Computational Catalysis, Modeling & Simulations)

Fadimatu Nyako Dabai, Chemical Engineering Department, Faculty of Engineering, ABU Zaria

Chemical Engineering Department, Lecturer & Research Scholar (Catalysis & Reaction Engineering)

Adamu Uzairu, Chemistry Department, Faculty of Physical Sciences, ABU Zaria

3Chemistry Department, Faculty of Physical Sciences, ABU Zaria

Baba El-Yakubu Jibril, Chemical Engineering Department, Faculty of Engineering, ABU Zaria

Chemical Engineering Department, Professor of Catalysis & Reaction Engineering

References

S. Asadi, L. Vafi, R. Karimzadeh, Microp. & Mesop. Mat. 255 (2018) 253 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, John Wiley & Sons, Hoboken, USA, 2000, p. 211 (https://dx.doi.org/10.1002/0471651540)

S. Budavari, Propylene - The Merck Index, Merck & Co., Kenilworth, USA, 1996, p. 1

Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Cat. Today 148 (2009) 3 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

J. C. Philip, Survey of Industrial Chemistry, Springer, ISBN 9780471651543, 2001, p. 2

L. Yan, Z. H. Li, J. Lu, K. N. Fan, J. Phys. Chem. C 112 (2008) 51 (https://dx.doi.org/10.1021/jp807864z)

Y. Ming-Lei, Y. A. Zhu, X. G. Zhou, Z. J. Sui, D. Chen, ACS. Cat. 2 (2012) 1247 (https://dx.doi.org/10.1021/cs300031d)

N. Lauri, H. Karoliina, ACS Cat. 3 (2013) 3026 (https://dx.doi.org/10.1021/cs400566y)

H. Timothy, Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalyst, Ghent University, Ghent, Belgium, 2015, p. 15

S. Stephanie, M. K. Sabbe, V. V. Galvita, E. A. Redekop, M. F. Reyniers, G. B. Marin, ACS Cat. 7 (2017) 7495 (https://dx.doi.org/10.1021/acscatal.7b01584)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Jibril, B. J. of Pure & Appl. Sci. 11 (2018) 178 (https://dx.doi.org/10.4314/bajopas.v11i1.29S)

J. Zhang, Z. R-Jia, C. Q-Yu, S. Z-Jun, Z. X-Gui, Z. Y-An, Cat. Today 2020 In press (https://dx.doi.org/10.1016/j.cattod.2020.02.023)

E. Araujo-Lopez, L. Joos, B. D. Vandegehuchte, D. I. Sharapa, F. Studt, The J. of Phys. Chem. C 124 (2020) 3171 (https://dx.doi.org/10.1021/acs.jpcc.9b11424)

Y. Xie, R. Luo, G. Sun, S. Chen, Z. J. Zhao, R. Mu, RSC Chem. Sci. 11 (2020) 3845 (https://dx.doi.org/10.1039/C8CY00564H)

J. H. Warren, A guide to molecular mechanics and quantum chemical calculations, Wavefunction, Irvine, USA, 2003, p. 89

P. Brown, J. Forsyth, E. Lelievre-Berna, F. Tasset, J. Phys.: Condens. Matter 14 (2002) 1957 (https://dx.doi.org/10.1088/0953-8984/14/8/323)

W. Yanbiao, G. Xinxin, W. Jinla, Phy. Chem. Chem. Phys. 12 (2010) 2471 (https://dx.doi.org/10.1039/B920033A)

C. Compere, D. Costa, L. Jolly, E. Mauger, C. Gessner–Prettre, New J. of Chem. 24 (2000) 993 (https://dx.doi.org/10.1039/B005313I)

S. Veliah, K. Xiang, R. Pandey, J. Recio, J. Newsam, J. Phys. Chem. B 102 (1997) 1126 (https://dx.doi.org/10.1021/jp972546m)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Y. Jibril, IWCRAS 2020

N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2005

I. Kennedy, H. Geering, M. Rose, A. Crossan, Entropy 21 (2019) 454 (https://dx.doi.org/10.3390/e21050454)

T. L. Hill, An Introduction to Statistical Thermodynamics, Dover Publications Inc., New York, USA, 1960

C. T. Campbell, L. H. Sprowl, L. Árnadóttir, The J. of Phys. Chem. 120 (2016) 10283 (https://dx.doi.org/10.1021/acs.jpcc.6b00975)

A. Savara, J. Phys. Chem. C 117 (2013) 15710 (https://dx.doi.org/10.1021/jp404398z)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem. C 121 (2017) 17 (https://dx.doi.org/10.1021/acs.jpcc.7b03318)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem. C 120 (2016) 9719 (https://dx.doi.org/10.1021/acs.jpcc.5b11616)

B. Y. Jibril, Applied Catalysis A: General 264 (2004) 193 (https://dx.doi.org/10.1021/ie000285o)

D. Yu-Jue, Z. H. Li, K. N. Fan, J. of Mol. Cat. A: General 379 (2013) 122 (https://dx.doi.org/10.1016/j.molcata.2013.08.011)

P. Wang, S. N. Steinmann, G. Fu, C. Michel, P. Sautet ACS Cat. 7 (2017) 1955 (https://dx.doi.org/10.1021/acscatal.6b03544)

F. Maldonado, A. Stashans, Surface Rev. & Letters 23 (2016) 1650037 (https://dx.doi.org/10.1142/S0218625X16500372)

Z. J. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng, J. Gong, Ang. Chem. 57 (2018) 6791 (https://dx.doi.org/10.1002/anie.201800123).

Published

2020-07-22

How to Cite

[1]
T. Oyegoke, F. N. Dabai, A. Uzairu, and B. E.-Y. Jibril, “Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach”, J. Serb. Chem. Soc., vol. 85, no. 5, p. -, Jul. 2020.

Issue

Section

Theoretical Chemistry