Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach

Toyese Oyegoke, Fadimatu Nyako Dabai, Adamu Uzairu, Baba El-Yakubu Jibril

Abstract


The catalyst coking and production of undesired products during the transformation of propane into propylene has been in a critical challenge in the on-purpose approach of propylene production. The mechanism contributing to this challenge was theoretically investigated through the investigation of cracking reaction routes to understanding how to promote the coking of this catalyst. The study carried out employed the use of a DFT and cluster approach in the search for the kinetic and thermodynamic data of the reaction mechanism involved in the process over Cr2O3. The RDS and feasible route that easily promote the production of small hydrocarbons like ethylene, methane, and many others were identified. The study suggests, Cr-site substitution or co-feeding of oxygen, as a way that aids in preventing deep dehydrogenation in the conversion of propane to propylene. This information will help in improving the Cr2O3 catalyst performance and further improve the production yield.

Keywords


Catalyst deactivation; olefins; rate-determining step; scission; first principle; coking

Full Text:

PDF (1,384 kB)

References


S. Asadi, L. Vafi, R. Karimzadeh, Microp. & Mesop. Mat. 255 (2018) 253 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, John Wiley & Sons, Hoboken, USA, 2000, p. 211 (https://dx.doi.org/10.1002/0471651540)

S. Budavari, Propylene - The Merck Index, Merck & Co., Kenilworth, USA, 1996, p. 1

Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Cat. Today 148 (2009) 3 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

J. C. Philip, Survey of Industrial Chemistry, Springer, ISBN 9780471651543, 2001, p. 2

L. Yan, Z. H. Li, J. Lu, K. N. Fan, J. Phys. Chem. C 112 (2008) 51 (https://dx.doi.org/10.1021/jp807864z)

Y. Ming-Lei, Y. A. Zhu, X. G. Zhou, Z. J. Sui, D. Chen, ACS. Cat. 2 (2012) 1247 (https://dx.doi.org/10.1021/cs300031d)

N. Lauri, H. Karoliina, ACS Cat. 3 (2013) 3026 (https://dx.doi.org/10.1021/cs400566y)

H. Timothy, Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalyst, Ghent University, Ghent, Belgium, 2015, p. 15

S. Stephanie, M. K. Sabbe, V. V. Galvita, E. A. Redekop, M. F. Reyniers, G. B. Marin, ACS Cat. 7 (2017) 7495 (https://dx.doi.org/10.1021/acscatal.7b01584)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Jibril, B. J. of Pure & Appl. Sci. 11 (2018) 178 (https://dx.doi.org/10.4314/bajopas.v11i1.29S)

J. Zhang, Z. R-Jia, C. Q-Yu, S. Z-Jun, Z. X-Gui, Z. Y-An, Cat. Today 2020 In press (https://dx.doi.org/10.1016/j.cattod.2020.02.023)

E. Araujo-Lopez, L. Joos, B. D. Vandegehuchte, D. I. Sharapa, F. Studt, The J. of Phys. Chem. C 124 (2020) 3171 (https://dx.doi.org/10.1021/acs.jpcc.9b11424)

Y. Xie, R. Luo, G. Sun, S. Chen, Z. J. Zhao, R. Mu, RSC Chem. Sci. 11 (2020) 3845 (https://dx.doi.org/10.1039/C8CY00564H)

J. H. Warren, A guide to molecular mechanics and quantum chemical calculations, Wavefunction, Irvine, USA, 2003, p. 89

P. Brown, J. Forsyth, E. Lelievre-Berna, F. Tasset, J. Phys.: Condens. Matter 14 (2002) 1957 (https://dx.doi.org/10.1088/0953-8984/14/8/323)

W. Yanbiao, G. Xinxin, W. Jinla, Phy. Chem. Chem. Phys. 12 (2010) 2471 (https://dx.doi.org/10.1039/B920033A)

C. Compere, D. Costa, L. Jolly, E. Mauger, C. Gessner–Prettre, New J. of Chem. 24 (2000) 993 (https://dx.doi.org/10.1039/B005313I)

S. Veliah, K. Xiang, R. Pandey, J. Recio, J. Newsam, J. Phys. Chem. B 102 (1997) 1126 (https://dx.doi.org/10.1021/jp972546m)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Y. Jibril, IWCRAS 2020

N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2005

I. Kennedy, H. Geering, M. Rose, A. Crossan, Entropy 21 (2019) 454 (https://dx.doi.org/10.3390/e21050454)

T. L. Hill, An Introduction to Statistical Thermodynamics, Dover Publications Inc., New York, USA, 1960

C. T. Campbell, L. H. Sprowl, L. Árnadóttir, The J. of Phys. Chem. 120 (2016) 10283 (https://dx.doi.org/10.1021/acs.jpcc.6b00975)

A. Savara, J. Phys. Chem. C 117 (2013) 15710 (https://dx.doi.org/10.1021/jp404398z)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem. C 121 (2017) 17 (https://dx.doi.org/10.1021/acs.jpcc.7b03318)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem. C 120 (2016) 9719 (https://dx.doi.org/10.1021/acs.jpcc.5b11616)

B. Y. Jibril, Applied Catalysis A: General 264 (2004) 193 (https://dx.doi.org/10.1021/ie000285o)

D. Yu-Jue, Z. H. Li, K. N. Fan, J. of Mol. Cat. A: General 379 (2013) 122 (https://dx.doi.org/10.1016/j.molcata.2013.08.011)

P. Wang, S. N. Steinmann, G. Fu, C. Michel, P. Sautet ACS Cat. 7 (2017) 1955 (https://dx.doi.org/10.1021/acscatal.6b03544)

F. Maldonado, A. Stashans, Surface Rev. & Letters 23 (2016) 1650037 (https://dx.doi.org/10.1142/S0218625X16500372)

Z. J. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng, J. Gong, Ang. Chem. 57 (2018) 6791 (https://dx.doi.org/10.1002/anie.201800123).




DOI: https://doi.org/10.2298/JSC200521044O

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)