Achillea clypeolata Sibth. & Sm. essential oil composition and QSRR model for predicting retention indices Scientific paper

Main Article Content

Milica Aćimović
https://orcid.org/0000-0002-5346-1412
Lato Pezo
https://orcid.org/0000-0002-0704-3084
Mirjana Cvetković
Jovana Stanković
Ivana Čabarkapa
https://orcid.org/0000-0003-2215-4281

Abstract

The aim of this study was the prediction model of retention indices of compounds from the aboveground parts of Achillea clypeolata Sibth. & Sm. essential oil, obtained by hydrodistillation and analysed by GC–MS. The quan­titative structure–retention relationship analysis was applied in order to anti­ci­pate the retention time of the obtained compounds. The selection of the seven molecular descriptors was done by a genetic algorithm. The chosen des­criptors were uncorrelated and were used to construct an artificial neural network. A total of 40 experimentally obtained retention indices was used to build this pre­diction model. The coefficient of determination for the training, testing and val­id­ation cycles were: 0.950, 0.825 and 1.000, respectively, indi­ca­t­ing that this model could be used for prediction of retention indices for A. clypeolata, essential oil compounds.

Article Details

How to Cite
[1]
M. Aćimović, L. Pezo, M. Cvetković, J. Stanković, and I. Čabarkapa, “Achillea clypeolata Sibth. & Sm. essential oil composition and QSRR model for predicting retention indices: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 4, pp. 355-366, Apr. 2021.
Section
Organic Chemistry

References

A. Nedelcheva, J. Appl. Pharm. Sci. 2 (2012) 165 (https://doi.org/10.7324/JAPS.2012.2828)

R. Contreras-Medina, I. Luna-Vega, in Global Advances in Biogeography, L. Stevens, Ed., InTech, Rijeka, 2012, pp. 61–70 (https://doi.org/10.5772/34315)

I. Aljančić, S. Macura, N. Juranić, S. Anđelković, N. Ranđelović, S. Milosavljević, Phytochemistry 43 (1996) 169 (https://doi.org/10.1016/0031-9422(96)00271-3)

M. Todorova, M. Krasteva, M. Markova, E. Tsankova, R. Taskova, D. Peev, Phytochemistry 49 (1998) 2371 (https://doi.org/10.1016/S0031-9422(98)00201-5)

I. Werner, P. Mucaji, A. Presser, S. Glasl, Z. Naturforsch. 62 (2007) 267 (https://doi.org/10.1002/chin.200725175)

J. Cvetkovic, M. Dimitrijevic, M. Ilic, S. Simonovic, V. Stankov-Jovanovic, V. Mitic, G. Stojanovic, in Proceedings of Congress of Chemists and Chemical Engineers of Bosnia and Herzegovina with international participation (2014), Sarajevo, Bosnia and Hercegovina, Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 2014, p. 99

M. Aćimović, M. Zorić, V. D. Zheljazkov, L. Pezo, I. Čabarkapa, J. Stanković Jeremić, M. Cvetković, Molecules 25 (2020) 5482 (https://doi.org/10.3390/molecules25225482)

N. Simić, R. Palić, V. Ranđelović, Flavour Fragr. J. 20 (2005) 127 (https://doi.org/10.1002/ffj.1391)

J. C. Chalcat, S. D. Petrovic, Z. A. Maksimović, M. S. Gorunović, J. Essent. Oil Res. 15 (2005) 549 (https://doi.org/10.1080/10412905.2005.9698991)

B. Zlatković, S. Bogosavljević, A. Radivojević, M. Pavlović,. J. Ethnopharmacol. 151 (2014) 704 (https://doi.org/10.1016/j.jep.2013.11.037)

J. L. Wolfender, G. Martia, A. Thomas, S. Bertranda, J. Chromatogr., A 1382 (2015) 136 (https://doi.org/10.1016/j.chroma.2014.10.091)

K. Héberger, J. Chromatogr., A 1158 (2007) 273 (https://doi.org/10.1016/j.chroma.2007.03.108)

R. Kaliszan, Chem. Rev. 107 (2007) 3212 (https://doi.org/10.1021/cr068412z)

L. Wu, P. Gong, Y. Wu, K. Liao, H. Shen, Q. Qi, H. Liu, G. Wang, H. Hao, J. Chromatogr., A 1303 (2013) 39 (https://doi.org/10.1016/j.chroma.2013.06.041)

T. Khezeli, A. Daneshfar, R. Sahraei, Talanta 150 (2016) 577 (https://doi.org/10.1016/j.talanta.2015.12.077)

Y. Marrero-Ponce, S. J. Barigye, M. E. Jorge-Rodriguez, T. Tran-Thi-Thu, Chem. Pap. 72 (2017) 57 (https://doi.org/10.1007/s11696-017-0257-x)

D. Micić, S. Ostojić, L. Pezo, S. Blagojević, B. Pavlić, Z. Zeković, S. Đurović, Ind. Crops Prod. 138 (2019) (https://doi.org/10.1016/j.indcrop.2019.06.001)

A. Tropsha, A. Golbraikh, Curr. Pharm. Des. 13 (2007) 3494 (https://doi.org/10.2174/138161207782794257)

B. Zisi, I. Sampsonidis, S. Fasoula, K. Papachristos, M. Witting, H.G. Gika, P. Nikitas, A. Pappa-Louisi Metabolites 7 (2017) 7 (https://doi.org/10.3390/metabo7010007)

D. D. Matyushin, A. Y.Sholokhova, A. K. Buryak, J. Chromatogr., A 1607 (2019) 460395 (https://doi.org/10.1016/j.chroma.2019.460395)

J. Dong, D. S. Cao, H. Y. Miao, S. Liu, B. C. Deng, Y. H. Yun, N. N. Wang, A. P. Lu, W. B. Zeng, A. F. Chen, J. Cheminformatics 7 (2015) 60 (https://doi.org/10.1186/s13321-015-0109-z)

C. W. Yap, ‎J. Comput. Chem. 32,(2011) 1446 (https://doi.org/10.1002/jcc.21707)

D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning, Addison-Wesley, Longman, Boston, MA, 1989 (ISBN:0201157675) (https://doi.org/10.5860/choice.27-0936)

A. Tropsha, Mol. Inform. 29 (2010) 476 (https://doi.org/10.1002/minf.201000061)

Statistica 10 software (StatSoft, Inc. Statistica, ver. 10, data analysis software system) (http://www.statsoft.com/, last accessed 10 January 2019)

R. Aalizadeh, N. S. Thomaidis, A. A. Bletsou, P. Gago-Ferrero, J. Chem. Inf. Model. 56 (2016) 1384 (https://doi.org/10.1021/acs.jcim.5b00752)

Q. Xu, C. Wei, R. Liu, S. Gu, J. Xu, Chemom. Intell. Lab. Syst. 146 (2015) 313 (https://doi.org/10.1016/j.chemolab.2015.06.001)

P. Kojic, R. Omorjan, Chem. Eng. Res. Des. 125 (2018) 398 (https://doi.org/10.1016/j.cherd.2017.07.029)

Y. Yoon, G. Swales, T. M. Margavio, J. Oper. Res. Soc. 44 (1993) 51 (https://doi.org/10.1057/jors.1993.6)

N. Radulović, B. Zlatković, R. Palić, G. Stojanović, Nat. Prod. Comm. 2 (2007) 453 (https://journals.sagepub.com/doi/pdf/10.1177/1934578X0700200417)

M. Mohammadhosseini, Anal. Chem. Lett. 3 (2013) 226 (https://doi.org/10.1080/22297928.2013.861164)

M. Nekoei, M. Mohammadhosseini, E. Pourbasheer, Med. Chem. Res. 24 (2015) 3037 (https://doi.org/10.1007/s00044-015-1354-4)

R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, p. 27 (ISBN: 978-3-527-31852-0)

L. B. Kier, L. H. Hall, Molecular connectivity in chemistry and drug research, Academic Press, New York, 1976, p. 1214 (https://doi.org/10.1002/jps.2600660852)

K. Roy, G. Ghosh, J. Chem. Inf. Comput. Sci. 44 (2004) 559-567. (https://doi.org/10.1021/ci0342066)

A. Roon, J.R. Parsons, H. A. J. Govers, J. Chromatogr., A 955 (2002) 105 (https://doi.org/10.1016/S0021-9673(02)00200-5)

M. T. Scotti, M. B. Fernandes, M. J. P. Ferreira, V. P. Emerenciano, Bioorgan. Med. Chem. 15 (2007) 2927 (https://doi.org/10.1016/j.bmc.2007.02.005)

B. Hollas, MATCH 45 (2002) 27 (http://match.pmf.kg.ac.rs/electronic_versions/Match45/match45_27-33.pdf)

R. García-Domenech, J. GálvezJesus, J.V. de Julián-Ortiz, L. Pogliani, Chem. Rev. 108 (2008) 1127 (https://doi.org/10.1021/cr0780006).

Most read articles by the same author(s)