Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties

Authors

  • Lidija Radovanović Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbiа
  • Jelena D. Zdravković Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbiа
  • Bojana Simović Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbiа
  • Željko Radovanović Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbiа
  • Katarina Mihajlovski Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia
  • Miroslav D. Dramićanin Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, Belgrade, Serbia
  • Jelena Rogan Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia

DOI:

https://doi.org/10.2298/JSC200629048R

Keywords:

nanomaterials, photoluminescence, photocatalysis, antimicrobial activity

Abstract

Zinc oxide (ZnO) nanoparticles were obtained by thermal decompo­sition of one-dimensional zinc–benzenepolycarboxylato complexes as single-
-source precursors at 450 °C in an air atmosphere. The mechanism and kinetics of thermal degradation of zinc–benzenepolycarboxylato complexes were ana­lyzed under non-isothermal conditions in an air atmosphere. The results of
X-ray powder diffraction and field emission scanning electron microscopy rev­ealed hexagonal wurtzite structure of ZnO with an average crystallite size in the range of 39–47 nm and similar morphology. The band gap and the specific surface area of ZnO nanoparticles were determined using UV–Vis diffuse ref­lectance spectroscopy and the Brunauer, Emmett and Teller method, respect­ively. The photoluminescent, photocatalytic and antimicrobial properties of the ZnO nanoparticles were also examined. The best photocatalytic activity in the degradation of C. I. Reactive Orange 16 dye was observed for the ZnO powder where the crystallites form the smallest agglomerates. All ZnO nanoparticles showed excellent inhibitory effect against Gram-positive bacterium Staphylo­coccus aureus and Gram-negative bacterium Escherichia coli.

References

A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7 (2014) 2833 (https://doi.org/10.3390/ma7042833)

A. Moezzi, A. M. McDonagh, M. E. Cortie, Chem. Eng. J. 185/186 (2012) 1 (https://doi.org/10.1016/j.cej.2012.01.076)

Z. L. Wang, J. Phys.: Condens. Matter 16 (2004) R829 (https://doi.org/10.1088/0953-8984/16/25/R01)

Y. Song, X. Li, L. Sun, L. Wang, RSC Adv. 5 (2015) 7267 (https://doi.org/10.1039/C4RA12273A)

J. Ban, G. Xu, L. Zhang, H. Lin, Z. Sun, Y. Lv, D. Jia, J. Solid State Chem. 256 (2017) 151 (http://dx.doi.org/10.1016/j.jssc.2017.09.002)

M. I. Khalil, M. M. Al-Qunaibit, A. M. Al-zahem, J. P. Labis, Arab. J. Chem. 7 (2014) 1178 (https://doi.org/10.1016/j.arabjc.2013.10.025)

H. Y. Shi, B. Deng, S. L. Zhong, L. Wang, A. W. Xu, J. Mater. Chem. 21 (2011) 12309 (https://doi.org/10.1039/C1JM10809C)

Y. Guo, R. Weiss, R. Boese, M. Epple, Thermochim. Acta 446 (2006) 101 (https://doi.org/10.1016/j.tca.2006.01.002)

R. R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, ACS Nano 11 (2017) 5293 (https://doi.org/10.1021/acsnano.7b02796)

R. Das, P. Pachfule, R. Banerjee, P. Poddar, Nanoscale 4 (2012) 591 (https://doi.org/10.1039/C1NR10944H)

R. Kruszynski, M. Swiatkowski, J. Saudi Chem. Soc. 22 (2018) 816 (https://doi.org/10.1016/j.jscs.2018.01.003)

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, I. L. Kuskovsky, Nanoscale Res. Lett. 2 (2007) 297 (https://doi.org/10.1007/s11671-007-9064-6)

S. Venkataprasad Bhat, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, Solid State Commun. 149 (2009) 510 (https://doi.org/10.1016/j.ssc.2009.01.014)

G. Xiong, U. Pal, J. Garcia Serrano, J. Appl. Phys. 101 (2007) 024317 (http://dx.doi.org/10.1063/1.2424538)

J. S. Chang, J. Strunk, M. N. Chonga, P. E. Poh, J. D. Ocon, J. Hazard. Mater. 381 (2020) 120958 (https://doi.org/10.1016/j.jhazmat.2019.120958)

D. Li, H. Haneda, Chemosphere 51 (2003) 129 (https://doi.org/10.1016/S0045-6535(02)00787-7)

A. C. Dodd, A. J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8 (2006) 43 (https://doi.org/10.1007/s11051-005-5131-z)

A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7 (2015) 219 (https://doi.org/10.1007/s40820-015-0040-x)

L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M. V. Rodić, Polyhedron 112 (2016) 18 (https://doi.org/10.1016/j.poly.2016.03.054)

H. P. Klug, L. E. Alexander, X-ray diffraction procedures, 2nd ed., Wiley, New York, 1974

F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, Academic Press, London, 1999

J. Rogan, D. Poleti, Thermochim. Acta 413 (2004) 227 (https://doi.org/10.1016/j.tca.2003.10.015)

J. Rogan, D. Poleti, Lj. Karanović, Z. Jagličić, J. Mol. Struct. 985 (2011) 371 (https://doi.org/10.1016/j.molstruc.2010.11.024)

A. M. Abdalla, J. Anal. Appl. Pyrolysis 70 (2003) 687 (https://doi.org/10.1016/S0165-2370(03)00040-8)

J. D. Zdravković, L. Radovanović, D. Poleti, J. Rogan, P. Vulić, Ž. Radovanović, D. M. Minić, Solid State Sci. 80 (2018) 123 (https://doi.org/10.1016/j.solidstatesciences.2018.04.013)

C. H. Bamford, C. F. H. Tipper, Compr. Chem. Kin. 22 (1980) 115 (https://doi.org/10.1016/S0069-8040(08)70385-6)

J. Zdravković, D. Poleti, J. Rogan, N. N. Begović, V. A. Blagojević, M. Vasić, D. M. Mi¬nić, J. Therm. Anal. Calorim. 123 (2016) 1715 (https://doi.org/10.1007/s10973-015-5007-0)

B. Simović, D. Poleti, A. Golubović, A. Matković, M. Šćepanović, B. Babić, G. Branković, Process. Appl. Ceram. 11 (2017) 27 (https://doi.org/10.2298/PAC1701027S)

K. G. Chandrappa, T. V. Venkatesha, Nano-Micro Lett. 4 (2012) 14 (https://doi.org/10.1007/BF03353686)

D. Thapa, J. Huso, J. L. Morrison, C. D. Corolewski, M. D. McCluskey, L. Bergman, Opt. Mater. 58 (2016) 382 (https://doi.org/10.1016/j.optmat.2016.05.008)

S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84 (1998) 2287 (https://doi.org/10.1063/1.368295)

Y. Ni, X. Wei, J. Hong, Y. Ye, Mater. Sci. Eng., B 121 (2005) 42 (https://doi.org/10.1016/j.mseb.2005.02.065)

A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, Appl. Phys. Lett. 88 (2006) 103107 (https://doi.org/10.1063/1.2182096)

F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V. D. Hodoroaba, V. Maurino, Appl. Catal., B-Environ. 216 (2017) 80 (https://doi.org/10.1016/j.apcatb.2017.05.046)

K. K. Ioannis, A. A. Triantafyllos, Appl. Catal., B-Environ. 49 (2004) 1 (https://doi.org/10.1016/j.apcatb.2003.11.010)

N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mat. 9 (2008) 035004 (https://doi.org/10.1088/1468-6996/9/3/035004)

R. Dobrucka, J. Dlugaszewska, M. Kaczmarek, Biomed. Microdevices (2018) 20 (https://doi.org/10.1007/s10544-017-0233-9)

O. Yamamoto, Int. J. Inorg. Mater. 3 (2001) 643 (https://doi.org/10.1016/S1466-6049(01)00197-0).

Published

2020-11-27

How to Cite

[1]
L. Radovanović, “Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: Photoluminescent, photocatalytic and antimicrobial properties”, J. Serb. Chem. Soc., vol. 85, no. 11, pp. 1475-1488, Nov. 2020.

Issue

Section

Materials

Most read articles by the same author(s)