Zinc oxide nanoparticles prepared by thermal decomposition of zinc benzenepolycarboxylato precursors: photoluminescent, photocatalytic and antimicrobial properties

Lidija Radovanović, Jelena D. Zdravković, Bojana Simović, Željko Radovanović, Katarina Mihajlovski, Miroslav D. Dramićanin, Jelena Rogan

Abstract


Zinc oxide (ZnO) nanoparticles were obtained by thermal decompo­sition of one-dimensional zinc–benzenepolycarboxylato complexes as single-source precursors at 450 °C in air atmosphere. The mechanism and kinetics of thermal degradation of zinc–benzenepolycarboxylato complexes were analyzed under non-isothermal conditions in air atmosphere. The results of X-ray powder diffraction and field emission scanning electron microscopy revealed hexagonal wurtzite structure of ZnO with an average crystallite size in the range of 39‑47 nm and similar morphology. The band gap and the specific surface area of ZnO nanoparticles were determined using ultraviolet–visible diffuse reflectance spectroscopy and Brunauer, Emmett and Teller method, respectively. The photo­luminescent, photocatalytic and antimicrobial properties of ZnO nano­particles were also examined. The best photocatalytic activity for degradation of C. I. Reactive Orange 16 dye has been observed for ZnO powder where crystallites form the smallest agglomerates. All ZnO nanoparticles showed excellent inhi­bitory effect against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.


Keywords


Nanomaterials; photoluminescence; photocatalysis; antimicrobial activity

Full Text:

PDF (2,125 kB)

References


A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7 (2014) 2833 (https://doi.org/10.3390/ma7042833)

A. Moezzi, A. M. McDonagh, M. E. Cortie, Chem. Eng. J. 185/186 (2012) 1 (https://doi.org/10.1016/j.cej.2012.01.076)

Z. L. Wang, J. Phys.: Condens. Matter 16 (2004) R829 (https://doi.org/10.1088/0953-8984/16/25/R01)

Y. Song, X. Li, L. Sun, L. Wang, RSC Adv. 5 (2015) 7267 (https://doi.org/10.1039/C4RA12273A)

J. Ban, G. Xu, L. Zhang, H. Lin, Z. Sun, Y. Lv, D. Jia, J. Solid State Chem. 256 (2017) 151 (http://dx.doi.org/10.1016/j.jssc.2017.09.002)

M. I. Khalil, M. M. Al-Qunaibit, A. M. Al-zahem, J. P. Labis, Arab. J. Chem. 7 (2014) 1178 (https://doi.org/10.1016/j.arabjc.2013.10.025)

H. Y. Shi, B. Deng, S. L. Zhong, L. Wang, A. W. Xu, J. Mater. Chem. 21 (2011) 12309 (https://doi.org/10.1039/C1JM10809C)

Y. Guo, R. Weiss, R. Boese, M. Epple, Thermochim. Acta 446 (2006) 101 (https://doi.org/10.1016/j.tca.2006.01.002)

R. R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, ACS Nano 11 (2017) 5293 (https://doi.org/10.1021/acsnano.7b02796)

R. Das, P. Pachfule, R. Banerjee, P. Poddar, Nanoscale 4 (2012) 591 (https://doi.org/10.1039/C1NR10944H)

R. Kruszynski, M. Swiatkowski, J. Saudi Chem. Soc. 22 (2018) 816 (https://doi.org/10.1016/j.jscs.2018.01.003)

Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, I. L. Kuskovsky, Nanoscale Res. Lett. 2 (2007) 297 (https://doi.org/10.1007/s11671-007-9064-6)

S. Venkataprasad Bhat, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, Solid State Commun. 149 (2009) 510 (https://doi.org/10.1016/j.ssc.2009.01.014)

G. Xiong, U. Pal, J. Garcia Serrano, J. Appl. Phys. 101 (2007) 024317 (http://dx.doi.org/10.1063/1.2424538)

J. S. Chang, J. Strunk, M. N. Chonga, P. E. Poh, J. D. Ocon, J. Hazard. Mater. 381 (2020) 120958 (https://doi.org/10.1016/j.jhazmat.2019.120958)

D. Li, H. Haneda, Chemosphere 51 (2003) 129 (https://doi.org/10.1016/S0045-6535(02)00787-7)

A. C. Dodd, A. J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8 (2006) 43 (https://doi.org/10.1007/s11051-005-5131-z)

A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7 (2015) 219 (https://doi.org/10.1007/s40820-015-0040-x)

L. Radovanović, J. Rogan, D. Poleti, M. Milutinović, M. V. Rodić, Polyhedron 112 (2016) 18 (https://doi.org/10.1016/j.poly.2016.03.054)

H. P. Klug, L. E. Alexander, X-ray diffraction procedures, 2nd ed., Wiley, New York, 1974.

F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, Academic Press, London, 1999.

J. Rogan, D. Poleti, Thermochim. Acta 413 (2004) 227 (https://doi.org/10.1016/j.tca.2003.10.015)

J. Rogan, D. Poleti, Lj. Karanović, Z. Jagličić, J. Mol. Struct. 985 (2011) 371 (https://doi.org/10.1016/j.molstruc.2010.11.024)

A. M. Abdalla, J. Anal. Appl. Pyrol. 70 (2003) 687 (https://doi.org/10.1016/S0165-2370(03)00040-8)

J. D. Zdravković, L. Radovanović, D. Poleti, J. Rogan, P. Vulić, Ž. Radovanović, D. M. Minić, Solid State Sci. 80 (2018) 123 (https://doi.org/10.1016/j.solidstatesciences.2018.04.013)

C. H. Bamford, C. F. H. Tipper, Compr. Chem. Kinet. 22 (1980) 115 (https://doi.org/10.1016/S0069-8040(08)70385-6)

J. Zdravković, D. Poleti, J. Rogan, N. N. Begović, V. A. Blagojević, M. Vasić, D. M. Mi¬nić, J. Therm. Anal. Calorim. 123 (2016) 1715 (https://doi.org/10.1007/s10973-015-5007-0)

B. Simović, D. Poleti, A. Golubović, A. Matković, M. Šćepanović, B. Babić, G. Branković, Process. Appl. Ceram. 11 (2017) 27 (https://doi.org/10.2298/PAC1701027S)

K. G. Chandrappa, T. V. Venkatesha, Nano-Micro Lett. 4 (2012) 14 (https://doi.org/10.1007/BF03353686)

D. Thapa, J. Huso, J. L. Morrison, C. D. Corolewski, M. D. McCluskey, L. Bergman, Opt. Mater. 58 (2016) 382 (https://doi.org/10.1016/j.optmat.2016.05.008)

S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84 (1998) 2287 (https://doi.org/10.1063/1.368295)

Y. Ni, X. Wei, J. Hong, Y. Ye, Mater. Sci. Eng. B 121 (2005) 42 (https://doi.org/10.1016/j.mseb.2005.02.065)

A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, Appl. Phys. Lett. 88 (2006) 103107 (https://doi.org/10.1063/1.2182096)

F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V. D. Hodoroaba, V. Maurino, Appl. Catal. B-Environ. 216 (2017) 80 (https://doi.org/10.1016/j.apcatb.2017.05.046)

K. K. Ioannis, A. A. Triantafyllos, Appl. Catal. B-Environ. 49 (2004) 1 (https://doi.org/10.1016/j.apcatb.2003.11.010)

N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mat. 9 (2008) 035004 (https://doi.org/10.1088/1468-6996/9/3/035004)

R. Dobrucka, J. Dlugaszewska, M. Kaczmarek, Biomed. Microdevices (2018) 20 (https://doi.org/10.1007/s10544-017-0233-9)

O. Yamamoto, Int. J. Inorg. Mater. 3 (2001) 643 (https://doi.org/10.1016/S1466-6049(01)00197-0)




DOI: https://doi.org/10.2298/JSC200629048R

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)