Understanding bioplastic materials - current state and trends

Sanja Jeremic, Jelena Milovanovic, Marija Mojicevic, Sanja Skaro Bogojevic, Jasmina Nikodinovic-Runic

Abstract


Plastic pollution is now considered one of the largest environmental threats facing humans and animals globally. Development of bioplastic materials may offer part of the solution as bioplastics include both nondegradable and biodegradable materials with both being important for sustainability. Bioplastic materials are currently being designed to encompass minimal carbon footprint, high recycling value and complete biodegradability. This review examines recent developments and trends in the field of bioplastic materials. A range of the most utilized bioplastic materials is presented (polylactic acid (PLA), polyhydroxy­alkanoate (PHA), starch, cellulose, bio-based poly(butylene succinate) (bio-PBS) and bio-polyethylene (bio-PE)) including their production, application and degradation options.


Keywords


bioplastics; biopolymers; biodegradation; polylactic acid; sustainability polyhydroxyalkanoates

Full Text:

PDF (1,368 kB)

References


M. Lackner, Bioplastics, Kirk‐Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2015, (https://doi.org/10.1002/0471238961.koe00006)

PlasticsEurope, Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data, Düsseldorf, Deutschland, 2019.

T. Thiounn,R. C. Smith, J. Polym. Sci. 58 (2020) 1347 (https://doi.org/10.1002/pol.20190261)

L. Lu, T. Luo, Y. Zhao, C. Cai, Z. Fu, Y. Jin, Sci. Total Environ. 667 (2019) 94 (https://doi.org/10.1016/j.scitotenv.2019.02.380)

H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 237 (https://doi.org/10.1016/j.tplants.2018.11.010)

M. Rujnić-Sokele, A. Pilipović, Waste Manag. Res. 35 (2017) 132 (https://doi.org/10.1177/0734242X16683272)

S. Spierling, E. Knüpffer, H. Behnsen, M. Mudersbach, H. Krieg, S. Springer, S. Albrecht, C. Herrmann, H.-J. Endres, J. Cleaner Prod. 185 (2018) 476 (https://doi.org/10.1016/j.jclepro.2018.03.014)

M. Vert, Y. Doi, K.-H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, F. Schué, Pure Appl. Chem. 84 (2012) 377 (https://doi.org/10.1351/PAC-REC-10-12-04)

A. McNaught, A. Wilkinson, Compendium of Chemical Terminology: IUPAC Recommendations, Blackwell Science, Malden, MA 1997, (ISBN 0865426848)

PD CEN/TR 15351: Guide for vocabulary in the field of degradable and biodegradable polymers and plastic items, 2006.

G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S. E. Selke, S. P. Singh, Macromol. Biosci. 7 (2007) 255 (https://doi.org/10.1002/mabi.200600168)

T. Narancic, S. Verstichel, S. Reddy Chaganti, L. Morales-Gamez, S. T. Kenny, B. De Wilde, R. Babu Padamati, K. E. O’Connor, Environ. Sci. Technol. 52 (2018) 10441 (https://doi.org/10.1021/acs.est.8b02963)

M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, USA, Wiley & Sons, 2011, (ISBN: 978-1-118-231463)

K. Nehra, P. Jamdagni, P. Lathwal, in Plant Biotechnology: Recent Advancements and Developments, eds. S. K. Gahlawat, R. K. Salar, P. Siwach, J. S. Duhan, S. Kumar, P. Kaur, Springer, Singapore, Singapore, 2017, pp. 297 (ISBN 978-981-10-4732-9)

R. P. Babu, K. O'Connor, R. Seeram, Prog. Biomater. 2 (2013) 8 (https://doi.org/10.1186/2194-0517-2-8)

J. E. G. van Dam, B. de Klerk-Engels, P. C. Struik, R. Rabbinge, Ind. Crops Prod. 21 (2005) 129 (https://doi.org/10.1016/j.indcrop.2004.02.003)

S. Ramesh Kumar, P. Shaiju, K. E. O'Connor, P. Ramesh Babu, Current Op. Green and Sustain. Chem. 21 (2020) 75 (https://doi.org/10.1016/j.cogsc.2019.12.005)

European Bioplastics (https://www.european-bioplastics.org/market) accessed July 30th 2020

R. Hatti-Kaul, L. J. Nilsson, B. Zhang, N. Rehnberg, S. Lundmark, Trends Biotechnol. 38 (2020) 50 (https://doi.org/10.1016/j.tibtech.2019.04.011)

Bioplastics Market Development Update 2019, European Bioplastics, 2019.

M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Compr. Rev. Food Sci. Food Saf. 9 (2010) (https://doi.org/10.1111/j.1541-4337.2010.00126.x)

Y. Wang, Y. Tashiro, K. Sonomoto, J. Biosci. Bioeng. 119 (2015) 10 (https://doi.org/10.1016/j.jbiosc.2014.06.003)

E. T. H. Vink, K. R. Rábago, D. A. Glassner, B. Springs, R. P. O'Connor, J. Kolstad, P. R. Gruber, Macromol. Biosci. 4 (2004) 551 (https://doi.org/10.1002/mabi.200400023)

C. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, R. Auras, Adv. Drug Delivery Rev. (2016) (https://dx.doi.org/10.1016/j.addr.2016.03.010)

S. Su, R. Kopitzky, S. Tolga, S. Kabasci, Polymers 11 (2019) 1193 (https://doi.org/10.3390/polym11071193)

O. Martin, L. Averous, Polymer 42 (2001) 6209 (https://doi.org/10.1016/S0032-3861(01)00086-6)

R. Turco, R. Ortega-Toro, R. Tesser, S. Mallardo, S. Collazo-Bigliardi, A. Boix, M. Malinconico, M. Rippa, M. Di Serio, G. Santagata, Coatings 9 (2019) 574 (https://doi.org/10.3390/coatings9090574)

M. P. Arrieta, M. D. Samper, M. Aldas, J. Lopez, Materials (Basel) 10 (2017) (https://doi.org/10.3390/ma10091008)

C. Diaz, H. Y. Pao, S. Kim, J. App. Packag.Res. 8 (2016) (doi: 10.14448/japr.08.0018)

S. Su, R. Kopitzky, S. Tolga, S. Kabasci, Polymers (Basel) 11 (2019) (doi: 10.3390/polym11071193. (10.3390/polym11071193)

Q. Ou-Yang, B. Guo, J. Xu, ACS Omega 3 (2018) 14309 (https://doi.org/10.1021/acsomega.8b02549)

M. Nofar, D. Sacligil, P. J. Carreau, M. R. Kamal, M. C. Heuzey, Int. J. Biol. Macromol. 125 (2019) 307 (https://doi.org/10.1016/j.ijbiomac.2018.12.002)

D. Maga, M. Hiebel, N. Thonemann, Resour. Conserv. Recycl. 149 (2019) 86 (https://doi.org/10.1016/j.resconrec.2019.05.018)

F. Gu, J. Guo, W. Zhang, P.A. Summers, P. Hall, Sci. Total Environ. 601-602 (2017) 1192 (https://doi.org/10.1016/j.scitotenv.2017.05.278)

M. Niaounakis, Eur. Polym. J. 114 (2019) 464 (https://doi.org/10.1016/j.eurpolymj.2019.02.027)

I. Wojnowska-Baryła, D. Kulikowska, K. Bernat, Sustainability 12:2088 (2020) (https://doi.org/10.3390/su12052088)

A. Calmon, S. Guillaume, V. Bellon-Maurel, P. Feuilloley, F. Françoise Silvestre, J. Environ. Polym. Degrad. 7 (1999) 157(https://doi.org/10.1023/A:1022849706383)

E. Rudnik, D. Briassoulis, Ind. Crops Prod. 33 (2011) 648 (https://doi.org/10.1016/j.indcrop.2010.12.031)

M. Karamanlioglu, G. D. Robson, Polym. Degrad. Stab. 98 (2013) 2063 (https://doi.org/10.1016/j.polymdegradstab.2013.07.004)

A. S. Al Hosni, J.K. Pittman, G. D. Robson, Waste Manag. 97 (2019) 105 (https://doi.org/10.1016/j.wasman.2019.07.042)

Y. Tokiwa, B. P. Calabia, Appl. Microbiol. Biotechnol. 72 (2006) 244 (https://doi.org/10.1007/s00253-006-0488-1)

B. G. Kale, R. Auras, S. P. Singh, Packag. Technol. Sci. 20 (2007) 49 (https://doi.org/10.1002/pts.742)

H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab. 75 (2002) 347 (https://doi.org/10.1016/S0141-3910(01)00240-3)

H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab. 75 (2002) 357 (https://doi.org/10.1016/S0141-3910(01)00239-7)

G.-Q. Chen, Chem. Soc. Rev. 38 (2009) 2434 (https://doi.org/10.1039/B812677C)

A. Steinbüchel, H. E. Valentin, FEMS Microbiol. Lett. 128 (1995) 219 (https://doi.org/10.1111/j.1574-6968.1995.tb07528.x)

A. Anjum, M. Zuber, K. M. Zia, A. Noreen, M. N. Anjum, S. Tabasum, Int. J. Biol. Macromol. 89 (2016) 161 (https://doi.org/10.1016/j.ijbiomac.2016.04.069)

C. S. K. Reddy, R. Ghai, Rashmi, V. C. Kalia, Bioresour. Technol. 87 (2003) 137 (https://doi.org/10.1016/S0960-8524(02)00212-2)

Y. Zhong, P. Godwin, Y. Jin, H. Xiao, Adv. Ind. Eng. Polym. Res. 3 (2020) 27 (https://doi.org/10.1016/j.aiepr.2019.11.002)

S. Y. Li, C. L. Dong, S. Y. Wang, H. M. Ye, G.-Q. Chen, Appl. Microbiol. Biotechnol. 90 (2011) 659 (https://doi.org/10.1007/s00253-010-3069-2)

A. Mukheem, M. Hossain, S. Shahabuddin, K. Muthoosamy, S. Manickam, K. Sudesh, R. Saidur, N. Sridewi, Material 11 (2018) 1673 (https://doi.org/10.3390/ma11091673)

I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y.-M. Corre, Y. Grohens, Polym. Test. 32 (2013) 842 (https://doi.org/10.1016/j.polymertesting.2013.04.004)

Z. Li, J. Yang, X. J. Loh, NPG Asia Mat. 8 (2016) 265 (https://doi.org/10.1038/am.2016.48)

S. Godbole, S. Gote, M. Latkar, T. Chakrabarti, Bioresour. Technol. 86 (2003) 33 (https://doi.org/10.1016/S0960-8524(02)00110-4)

P. Mousavioun, W. O. S. Doherty, G. George, Ind. Crops Prod. 32 (2010) 656 (https://doi.org/10.1016/j.indcrop.2010.08.001)

K. Dietrich, M.-J. Dumont, L. F. Del Rio, V. Orsat, Sust. Prod. Consumpt. 9 (2017) 58 (https://doi.org/10.1016/j.spc.2016.09.001)

G.-Q. Chen, X.-Y. Chen, F.-Q. Wu, J.-C. Chen, Adv. Ind. Eng. Polym. Res. 3 (2020) 1 (https://doi.org/10.1016/j.aiepr.2019.11.001)

M. Koller, L. Maršálek, M. M. de Sousa Dias, G. Braunegg, New Biotechnol. 37 (2017) 24-38 (https://doi.org/10.1016/j.nbt.2016.05.001)

Y. F. Tsang, V. Kumar, P. Samadar, Y. Yang, J. Lee, Y. S. Ok, H. Song, K.-H. Kim, E. E. Kwon, Y. J. Jeon, Environ. Int. 127 (2019) 625 (https://doi.org/10.1016/j.envint.2019.03.076)

T. U. Gerngross, D. P. Martin, PNAS 92 (1995) 6279 (https://doi.org/10.1073/pnas.92.14.6279)

A. M. Gumel, M. S. M. Annuar, Y. Chisti, J. Polym. Environ. 21 (2013) 580 (https://doi.org/10.1007/s10924-012-0527-1)

M. R. Kosseva, E. Rusbandi, Int. J. Biol. Macromol. 107 (2018) 762 (https://doi.org/10.1016/j.ijbiomac.2017.09.054)

D. H. Vu, D. Åkesson, M. J. Taherzadeh, J. A. Ferreira, Bioresour. Technol. 298 (2020) 122393 (https://doi.org/10.1016/j.biortech.2019.122393)

A. Soroudi, I. Jakubowicz, Eur. Polym. J. 49 (2013) 2839 (https://doi.org/10.1016/j.eurpolymj.2013.07.025)

M. Zaverl, M. Ö. Seydibeyoğlu, M. Misra, A. Mohanty, J. Appl. Polym. Sci. 125 (2012) E324-E331 (https://doi.org/10.1002/app.36840)

H. Ariffin, H. Nishida, M. A. Hassan, Y. Shirai, Biotechnol. J. (2010) 484 (https://doi.org/10.1002/biot.200900293)

S. M. Emadian, T. T. Onay, B. Demirel, Waste Manag. 59 (2017) 526 (https://doi.org/10.1016/j.wasman.2016.10.006)

V. Bátori, D. Åkesson, A. Zamani, M. J. Taherzadeh, I. S. Horváth, Waste Manag. 80 (2018) 406-413 (https://doi.org/10.1016/j.wasman.2018.09.040)

F. Ruggero, R. Gori, C. Lubello, Waste Manag. Res. 37 (2019) 959 (https://doi.org/10.1177/0734242X19854127)

D. I. Martínez-Tobón, M. Gul, A. L. Elias, D. Sauvageau, Appl. Microbiol. Biotechnol. 102 (2018) 8049 (https://doi.org/10.1007/s00253-018-9153-8)

A. K. Urbanek, A. M. Mirończuk, A. García-Martín, A. Saborido, I. de la Mata, M. Arroyo, Biochim. Biophys. Acta, Proteins Proteomics 1868 (2020) 140315 (https://doi.org/10.1016/j.bbapap.2019.140315)

E. Hablot, S. Dharmalingam, D. G. Hayes, L. C. Wadsworth, C. Blazy, R. Narayan, J. Polym. Environ. 22 (2014) 417 (https://doi.org/10.1007/s10924-014-0697-0)

A. Nakayama, N. Yamano, N. Kawasaki, Polym. Degrad. Stab. 166 (2019) 290 (https://doi.org/10.1016/j.polymdegradstab.2019.06.006)

V. Gopinath, S. Saravanan, A. R. Al-Maleki, M. Ramesh, J. Vadivelu, Biomed. Pharmacother. 107 (2018) 96 (https://doi.org/10.1016/j.biopha.2018.07.136)

R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Drug Des., Dev. Ther. 12 (2018) 3117 (https://doi.org/10.2147/DDDT.S165440)

L. Averousa, L. Moroa, P. Doleb, C. Fringantc, Polymer 41 (2000) 4157 (https://doi.org/10.1016/S0032-3861(99)00636-9)

M. Labet, W. Thielemans, A. Dufresne, Biomacromolecules 8 (2007) 2916 (https://doi.org/10.1021/bm700468f)

A. J. Salgado, O. P. Coutinho, R. L. Reis, Macromol Biosci 4 (2004) 743 (https://doi.org/10.1002/mabi.200400026)

E. J. Bealer, S. Onissema-Karimu, A. Rivera-Galletti, M. Francis, J. Wilkowski, D. Salas-de la Cruz, X. Hu, Polymers 12 (2020) 464 (https://doi.org/10.3390/polym12020464)

R. Whistler, J. Daniel, Starch, John Wiley & Sons, Inc., Hoboken, USA, 2005

O. O. Ige, L. E. Umoru, S. Aribo, ISRN Mater. Sci. 2012 (2012) 983062 (https://doi.org/10.5402/2012/983062)

R. de Bragança, P. Fowler, Industrial markets for starch, The Biocomposites Centre, University of Wales, Bangor, Gywnedd, UK, 2004 (http://bc.bangor.ac.uk/_includes/docs/pdf/indsutrial%20markets%20for%20starch.pdf

I. Vroman, L. Tighzert, Materials (Basel) 2 (2009) 307 (https://doi.org/10.3390/ma2020307)

M. S. Peresin, Y. Habibi, J. O. Zoppe, J. J. Pawlak, O. J. Rojas, Biomacromolecules 11 (2010) 674 (https://doi.org/10.1021/bm901254n)

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40 (2011) 3941 (https://doi.org/10.1039/C0CS00108B)

A. Majeed, R. A. Najar, W. Ul Rehman, S. Choudhary, S. Thakur, A. Singh, G. Sharma, P. Bhardwaj, Nat. Pol. Deriv. Blends Compos. Volume I, Chapter: 2, Nova Science Publishers, New York, USA, (2016) pp.23 (ISBN: 978-1-63485-831-1)

R. Mohammadinejad, A. Kumar, M. Ranjbar-Mohammadi, M. Ashrafizadeh, S. S. Han, G. Khang, Z. Roveimiab, Polymers (Basel) 12 (2020) 176 (https://doi.org/10.3390/polym12010176)

P. Chmielarz, eXPRESS Polym. Lett. 11 (2017) 140 (https://doi.org/10.3144/expresspolymlett.2017.15)

B. V. Mohite, S. V. Patil, Biotechnol. Appl. Biochem. 61 (2014) 101 (https://doi.org/10.1002/bab.1148)

P. A. Richmond, in Biosynthesis and Biodegradation of Cellulose, eds. C. H. Haigler, P. J. Weimer, Marcel Dekker, Inc., New York, USA, 1999. (ISBN 0–8247–8387–5)

J. K. Park, J. Y. Jung, Y. H. Park, Biotechnol. Lett. 25 (2003) 2055 (https://doi.org/10.1023/B:BILE.0000007065.63682.18)

J. Y. Jung, J. K. Park, H. N. Chang, Enzyme Microb. Technol. 37 (2005) 347 (https://doi.org/10.1016/j.enzmictec.2005.02.019)

H. S. Barud, J. Gutierrez, W. R. Lustri, M. F. S. Peres, S. J. L. Ribeiro, S. Saska, A. Tercjak, Bacterial Cellulose, (2016) 384 (https://doi.org/10.1002/9781119126218.ch21)

S. P. Lin, Loira Calvar, I., Catchmark, J. M., Liu, J. R., Demirci, A., & Cheng, K. C., Cellulose 20 (2013) 2191 (https://doi.org/10.1007/s10570-013-9994-3)

N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Carbohydr. Polym. 98 (2013) 1585 (https://doi.org/10.1016/j.carbpol.2013.08.018)

H. S. Barud, C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S. J. L. Ribeiro, Mater. Sci. Eng.: C 28 (2008) 515 (https://doi.org/10.1016/j.msec.2007.05.001)

A. M. Arévalo Gallegos, S. H. Carrera, R. Parra, T. Keshavarz, H. M. N. Iqbal, Bioresour. Technol. 11 (2016) 5641 (https://doi:10.15376/biores.11.2.Gallegos)

A. Banerjee, K. Chatterjee, G. Madras, Mater. Sci. Technol. 30 (2014) 567 (https://doi.org/10.1179/1743284713Y.0000000503)

D. Beaton, P. Pelletier, R. R. Goulet, Front. Microbiol. 10 (2019) 204 (https://doi.org/10.3389/fmicb.2019.00204)

W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Brown, Biomaterials 27 (2006) 145 (https://doi.org/10.1016/j.biomaterials.2005.07.035)

Y. Z. Wan, H. Luo, F. He, H. Liang, Y. Huang, X. L. Li, Compos. Sci. Technol. 69 (2009) 1212 (https://doi.org/10.1016/j.compscitech.2009.02.024)

R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie, G. T. Lonergan, J. Polym. Environ. 11 (2003) 49 (https://doi.org/10.1023/A:1024219821633)

R. Gattin, A. Copinet, C. Bertrand, Y. Couturier, Int. Biodeterior. Biodegrad. 50 (2002) 25 (https://doi.org/10.1016/S0964-8305(02)00039-2)

H.-T. Liao, C.-S. Wu, Mater. Sci. Eng. A 515 (2009) 207 (https://doi.org/10.1016/j.msea.2009.03.003)

G. Wypych, in Handbook of Material Weathering (Fifth Edition), ed. G. Wypych, Elsevier, Oxford, UK, 2013, pp. xi-xii. (ISBN: 9781895198621)

D. R. Ruka, P. Sangwan, C. J. Garvey, G. P. Simon, K. M. Dean, Environ. Sci. Technol. 49 (2015) 9979 (https://doi.org/10.1021/es5044485)

S. Keshk, A. El-kott, Natural bacterial biodegradable medical polymers: Bacterial cellulose, Elsevier, King Khalid University, Saudi Arabia (2017) 295 (https://doi.org/10.1016/B978-0-08-100372-5.00010-6)

I. Leppänen, M. Vikman, A. Harlin, H. Orelma, J. Polym. Environ. 28 (2020) 458 (https://doi.org/10.1007/s10924-019-01621-w)

S. Zhang, J. Yang, X. Liu, J. Chang, A. Cao, Biomacromolecules 4 (2003) 437 (https://doi.org/10.1021/bm0201183)

Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Int. J. Mol. Sci. 10 (2009) 3722 (https://doi.org/10.3390/ijms10093722)

J. Xu, Guo B.-H. Biotechnol. J. 5 (2010) 1149 (https://doi.org/10.1002/biot.201000136)

J. Xu, Guo B.-H. in Plastics from Bacteria: Natural Functions and Applications, Microbiology Monographs, ed., Springer, Berlin, Heidelberg, Germany, 2009, pp. 347 (ISBN 978-3-642-03287-5)

N. Cheroennet, S. Pongpinyopap, T. Leejarkpai, U. Suwanmanee, J. Cleaner Prod, 167 (2016) 987 (https://doi.org/10.1016/j.jclepro.2016.11.152)

Y.-S. Tai, M. Xiong, P. Jambunathan, J. Wang, J. Wang, C. Stapleton, K. Zhang, Nat. Chem. Biol. 12 (2016) 247 (https://doi.org/10.1038/nchembio.2020)

K.-K. Cheng, X.-B. Zhao, J. Zeng, J.-A. Zhang, Biofuels, Bioprod. Biorefin. 6 (2012) 302 (https://doi.org/10.1002/bbb.1327)

P. S. P. Market Report: Bioplastics: technologies and global markets (market report)

G. Ahrens, I. Roy, B. Pilic, P. Morganti, M. B. Coltelli, S. Danti, C. Lacoste, A. Gagliardini, R. Arias, EU Communities (2017) (https://cordis.europa.eu/project/id/745839)

Y. Y. H. Maeda, K. Abe, F. Hasegawa, M. Machida, R. Ishioka, K. Gomi, T. Nakajima, Appl. Microbiol. Biotechnol. 67 (2005) 778 (https://doi.org/10.1007/s00253-004-1853-6)

Bioplastics magazine, Bio-Based Polymers Have Potential in Biomedicine, Agricultural Markets (2019) https://www.bioplasticsmagazine.com/en/

T. Fujimaki, Polym. Degrad. Stab. 59 (1998) 209 (https://doi.org/10.1016/S0141-3910(97)00220-6)

R. Ishioka, E. Kitakuni, Y. Ichikawa, Biopolymers 4 (2002) 275 (https://application.wiley-vch.de/books/biopoly/con_v04.html)

J. Xu, B.-H. Guo, in Plastics from Bacteria: Natural Functions and Applications, Microbiology Monographs, Springer-Verlag, Berlin, Heidelberg, Germany, 2010, pp. 347 (ISBN 978-3-642-03287-5)

The Draft of the Integrated Plastic Waste Management Plan (2017-2021). Pollution Control Department: Bangkok, Thailand 2017.

K. Changwichan, T. Silalertruksa, H. Gheewala, Sustainability 10 (2018) 952 (https://doi.org/10.3390/su10040952)

T. Haider, C. Vçlker, J. Kramm, K. Landfester, F. R. Wurm, Angew. Chem. Int. Ed. 58 (2019) 50 (https://doi.org/10.1002/anie.201805766)

K. Chavalitdamrong, https://challenges.openideo.com/challenge/next-gen-cup-challenge/ideas/new-gen-biopbs-coated-cup-recyclable-home-compostable-cup, accessed June 30, 2020

M. Velrajan, Int. J. Innov. Res. Develop. 3 (2014) 185 (http://internationaljournalcorner.com/index.php/ijird_ojs/article/vi¬ew/135025)

M. Puchalski, G. Szparaga, T. Biela, A. Gutowska, S. Sztajnowski, I. Krucinska, Polymers 10 (2018) 251 (https://doi.org/10.3390/polym10030251)

D. Danso, J. Chow, W. R. Streit, Appl. Environ. Microbiol. 85 (2019) 01095 (https://doi:10.1128/AEM.01095-19)

I. Voevdina, A. Kržan, Bio-based polymers, Project Plastice report, 2013 (https://www.umsicht.fraunhofer.de/content/dam/umsicht/de/dokumente/ueber-uns/nationale-infostelle-nachhaltige-kunststoffe/bio-based-polymers.pdf)

C. M. Mendieta, M. E. Vallejos, F. E. Felissia, G. Chinga‑Carrasco, M. C. Area, J. Polym. Environ. (2017) (https://doi.org/10.1007/s10924-019-01582-0)

J. Gotro, Bio Polyethylene: Drop-in Replacement (https://polymerinnovation¬blog.com/bio-polyethylene-drop-in-replacement/) accessed May 15, 2020

A. Lesiuk, S. Pasieczna-Patkowska, Chemik 67 (2013) 863 (in Polish)

S. Lambert, M. Wagner, Chem. Soc. Rev. 46 (2017) 6855 (https://doi.org/10.1039/C7CS00149E)

A. C. S. Bonhommea, A-M. Delortb, J. Lemairea, M. Sancelmeb, G. Scottc, Polym. Degrad. Stab. 81 (2003) 441 (https://doi.org/10.1016/S01413910(03)001290)

M. Mierzwa‑Hersztek, K. Gondek, M. Kopeć, J. Polym. Environ. 27 (2019) 600 (https://doi.org/10.1007/s10924-019-01368-4)

AZoCleantech, Recycling of High-Density Polyethylene (HDPE or PEHD), 2012, https://www.azocleantech.com/article.aspx?ArticleID=255, accessed May 15, 2020.

ABA Australasian Bioplastics Association; https://bioplastics.org.au/bio¬plastics/break¬down-process-explained/, accessed May 15, 2020

I. Kyrikou, D. Briassoulis, J. Polym. Environ. 15 (2007) 125 (https://doi.org/10.1007/s10924-007-0053-8)

S. Walker, R. Rothman, J. Cleaner Prod. 261 (2020) 121158 (https://doi.org/10.1016/j.jclepro.2020.121158)

A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. H. Jang, M. Abu-Omar, S. L. Scott, S. Suh, ACS Sustainable Chem. Eng. 8 (2020) 3494 (https://doi.org/10.1021/acssuschemeng.9b06635)

T. Tiso, T. Narancic, R. Wei, E. Pollet, N. Beagan, K. Schröder, A. Honak, M. Jiang, S. T. Kenny, N. Wierckx, R. Perrin, L. Avérous, W. Zimmermann, K. O’Connor, L. M. Blank, bioRxiv (2020) (https://doi.org/10.1101/2020.03.16.993592)

L. A. Román-Ramírez, P. McKeown, C. Shah, J. Abraham, M. D. Jones, J. Wood, Ind. Eng. Chem. Res. 59 (2020) 11149 (https://doi.org/10.1021/acs.iecr.0c01122)




DOI: https://doi.org/10.2298/JSC200720051J

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)