Synthesis, characterization, antimicrobial screening and cytotoxic properties of Cu(II) and Zn(II) complexes with a bidentate hydroxylated 1,3-diaryl-2-propene-1-one ligand

Main Article Content

Pravinkumar Patil
Sainath Zangade


A series of binary metal complexes (halo, hydroxyl and methoxy sub­stituted bis(2-(E)acryloyl)naphthalen-1-yl)oxy)Cu(II) and Zn(II) (C1
C10)) of Cu2+ and Zn2+ ions derived from bi-coordinated hydroxylated 1,3-
-diaryl-2-propene-1-ones were synthesized. The newly synthesized metal com­plexes were structurally determined by FT-IR, 1H-NMR, 13C-NMR, ESR spectral, XRD and TGA analyses. The FT-IR and ESR studies demonstrated that interactions between metal ions with ligands occur through carbonyl oxy­gen and deprotonated hydroxyl oxygen and correspond to square-planar geo­metry for all complexes. The metal complexes were screened in-vitro and eva­luated for their antimicrobial and cytotoxic activities. The complexes C1 and C4 showed significant antimicrobial activity while the remaining complexes showed moderate antimicrobial activity against the tested pathogens. The com­plexes were evaluated for cytotoxic activity against the organism Artemia sal­ina. Complexes C2C5 exhibited LC50 values of 630.45, 969.99, 921.94 and 918.41 µM mL-1, respectively. Furthermore, the complexes were evaluated for their anticancer activity against the liver cancer cell line Hep G2 in comparison with the 5-fluorouracil standard. Complex C5 showed a significant IC50 value of 58.94 µg mL-1. Therefore, the present study is useful for the development of a new class of antimicrobial and anticancer agents.

Article Details

How to Cite
P. Patil and S. Zangade, “Synthesis, characterization, antimicrobial screening and cytotoxic properties of Cu(II) and Zn(II) complexes with a bidentate hydroxylated 1,3-diaryl-2-propene-1-one ligand”, J. Serb. Chem. Soc., vol. 86, no. 2, pp. 153-164, Mar. 2021.
Inorganic Chemistry


W. Dan, J. Dai, Eur. J. Med. Chem. 187 (2019) 111980 (

A. M. Asiri, S. A. Khan, Molecules 16 (2011) 523 (

D. Kakati, J. C. Sarma, Chem. Cent. J. 5 (2011) 1 (

H. Albuquerque, C. Santos, J. Cavaleiro, A. Silva, Curr. Org. Chem. 18 (2014) 2750 (

J. S. Biradar, B. S. Sasidhar, R. Parveen, Eur. J. Med. Chem. 45 (2010) 4074 (

B. P. Bandgar, S. S. Gawande, Bioorgan. Med. Chem. 18 (2010) 2060 (

P. S. Bhale, H. V. Chavan, S. B. Dongare, S. N. Shringare, Y. B. Mule, S. S. Nagane, B. P. Bandgar, Bioorg. Med. Chem. Lett. 27 (2017) 1502 (

M. Liu, P. Wilairat, M. L. Go, J. Med. Chem. 44 (2001) 4443 (

F. M. Atlam, M. N. El-Nahass, E. A. Bakr, T. A. Fayed, Appl. Organomet. Chem. 32 (2018) 1 (

P. Patil, G. Bhopalkar, S. Zangade, Curr. Microwave Chem. 7 (2020) 145 (

C. Sulpizio, J. Breibeck, A. Rompel, Coord. Chem. Rev. 374 (2018) 497 (

J. Johnson, A. Yardily, J. Coord. Chem. 72 (2019) 2437 (

D. Krajčiová, M. Melník, E. Havránek, A. Forgácsová, P. Mikuš, J. Coord. Chem. 67 (2014) 1493 (

L. Dkhar, V. Banothu, E. Pinder, R. M. Phillips, W. Kaminsky, M. R. Kollipara, Polyhedron 185 (2020) 114606 (

D. K. Mahapatra, S. K. Bharti, V. Asati, S. K. Singh, Eur. J. Med. Chem. 174 (2019) 142 (

S. Shukla, A. P. Mishra, Arab. J. Chem. 12 (2019) 1715 (

N. Patel, A. K. Prajapati, R. N. Jadeja, I. P. Tripathi, N. Dwivedi, J. Coord. Chem. 73 (2020) 1131 (

A. Levina, P. A. Lay, Dalton Trans. 40 (2011) 11675 (

O. I. Edozie, O. J. Godday, A. K. Chijioke, I. O. Uchenna, N. F. Chigozie, Bull. Chem. Soc. Ethiop. 34 (2020) 83 (

M. Iqbal, S. Ali, M. Tahir, M. Haleem, H. Gulab, N. Shah, J. Serb. Chem. Soc. 85 (2020) 203 (

A. D. Cort, P. De Bernardin, G. Forte, F. Y. Mihan, Chem. Soc. Rev. 39 (2010) 3863 (

C. T. Liu, A. A. Neverov, R. S. Brown, J. Am. Chem. Soc. 130 (2008) 13870 (

S. J. Hosseinimehr, S. Emami, S. M. Taghdisi, S. Akhlaghpoor, Eur. J. Med. Chem. 43 (2008) 557 (

Y. Q. Liu, X. M. Luo, H. J. Jiang, Z. Q. Zhang, Russ. J. Coord. Chem. (Khimiya) 44 (2018) 317 (

S. Liu, W. Cao, L. Yu, W. Zheng, L. Li, C. Fan, T. Chen, J. Chem. Soc. Dalton Trans. 42 (2013) 5932 (

P. Patil, P. A. Khan, S. Zangade, Curr. Chem. Lett. 9 (2020) 1838 (