Synthesis, characterization, antimicrobial screening and cytotoxic properties of Cu(II) and Zn(II) complexes with bidentate hydroxylated 1,3-diaryl-2-propene-1-ones ligand

Pravinkumar Patil, Sainath Zangade

Abstract


A series of binary metal complexes [halo, hydroxyl and methoxy sub­stituted bis (2-(E) acryloyl)naphthalen-1-yl)oxy)Cu(II) and Zn(II) (C1-C10)] of Cu2+ and Zn2+ ions derived from bi-coordinated hydroxylated 1,3-diaryl-2-
-propene-1-ones were synthesized. The newly synthesized metal complexes were structurally determined by FT-IR, 1H NMR, 13CNMR, ESR spectral, XRD and TGA analysis. The FT-IR and ESR studies demonstrated that interactions between metal ions with ligands occur through carbonyl oxygen and deprotonated hydroxyl oxygen and corresponds to square-planar geometry for all complexes. In-vitro the metal complexes were screened and evaluated for their antimicrobial and cytotoxic activity. The complexes C1 and C4 showed the significant antimicrobial activity while the remaining complexes were showed the moderately antimicrobial activity against the tested pathogens. The complexes were evaluated for cytotoxic activity against the organism Artemia salina. The complexes C2, C3, C4 and C5 were showed the LC50 values as 630.45, 969.99, 921.94 and 918.41 µM mL-1 respectively. Further complexes were evaluated for anticancer activity against liver cancer cell line (Hep G2) in comparison with 5-fluorouracil standard. The complex C5 showed the significant IC50 value 58.94 µg mL-1. Therefore the present study is useful to develop the new class of antimicrobial and anticancer agents.


Keywords


metal complexes, 1,3-diaryl-2-propene-1-one derivatives, antimicrobial activity, cytotoxicity, anticancer activity

Full Text:

PDF (2,624 kB)

References


W. Dan, J. Dai, Eur. J. Med. Chem. 187 (2020) 111980 (https://doi.org/10.1016/j.ejmech.2019.111980)

A. M. Asiri, S. A. Khan, Molecules 16 (2011) 523–531 (https://doi.org/10.3390/molecules16010523)

D. Kakati, J. C. Sarma, Chem. Cent. J. 5 (2011) 1–5 (http://dx.doi.org/10.1186/1752-153X-5-8)

H. Albuquerque, C. Santos, J. Cavaleiro, A. Silva, Curr. Org. Chem. 18 (2014) 2750–2775 (https://doi.org/10.2174/1385272819666141013224253)

J. S. Biradar, B. S. Sasidhar, R. Parveen, Eur. J. Med. Chem. 45 (2010) 4074–4078 (https://doi.org/10.1016/j.ejmech.2010.05.067)

B. P. Bandgar, S. S. Gawande, Bioorganic Med. Chem. 18 (2010) 2060–2065 (https://doi.org/10.1016/j.bmc.2009.12.077)

P. S. Bhale, H. V. Chavan, S. B. Dongare, S. N. Shringare, Y. B. Mule, S. S. Nagane, B. P. Bandgar, Bioorganic Med. Chem. Lett. 27 (2017) 1502–1507 (https://doi.org/10.1016/j.bmcl.2017.02.052)

M. Liu, P. Wilairat, M. L. Go, J. Med. Chem. 44 (2001) 4443–4452 (http://dx.doi.org/10.1021/jm0101747)

F. M. Atlam, M. N. El-Nahass, E. A. Bakr, T. A. Fayed, Appl. Organomet. Chem. 32 (2018) 1–24 (https://doi.org/10.1002/aoc.3951)

P. Patil, G. Bhopalkar, S. Zangade, Curr. Microw. Chem. 7 (2020) 145–156 (https://doi.org/10.2174/2213335607666200129113827)

C. Sulpizio, J. Breibeck, A. Rompel, Coord. Chem. Rev. 374 (2018) 497–524 (https://doi.org/10.1016/j.ccr.2018.05.023)

J. Johnson, A. Yardily, J. Coord. Chem. 72 (2019) 2437–2488 (https://doi.org/10.1080/00958972.2019.1669022)

D. Krajčiová, M. Melník, E. Havránek, A. Forgácsová, P. Mikuš, J. Coord. Chem. 67 (2014) 1493–1519 (https://doi.org/10.1080/00958972.2014.915966)

L. Dkhar, V. Banothu, E. Pinder, R. M. Phillips, W. Kaminsky, M. R. Kollipara, Polyhedron 185 (2020) 114606 (https://doi.org/10.1016/j.poly.2020.114606)

D. K. Mahapatra, S. K. Bharti, V. Asati, S. K. Singh, Eur. J. Med. Chem. 174 (2019) 142–158 (https://doi.org/10.1016/j.ejmech.2019.04.032)

S. Shukla, A. P. Mishra, Arab. J. Chem. 12 (2019) 1715–1721 (https://doi.org/10.1016/j.arabjc.2014.08.020)

N. Patel, A. K. Prajapati, R. N. Jadeja, I. P. Tripathi, N. Dwivedi, J. Coord. Chem. 73 (2020) 1131–1146 (https://doi.org/10.1080/00958972.2020.1774562)

A. Levina, P. A. Lay, Dalt. Trans. 40 (2011) 11675–11686 (https://doi.org/10.1039/C1DT10380F)

O. I. Edozie, O. J. Godday, A. K. Chijioke, I. O. Uchenna, N. F. Chigozie, Bull. Chem. Soc. Ethiop. 34 (2020) 83–92 (https://dx.doi.org/10.4314/bcse.v34i1.8)

M. Iqbal, S. Ali, M. Tahir, M. Haleem, H. Gulab, N. Shah, J. Serb. Chem. Soc. 85 (2020) 203–214 (https://doi.org/10.2298/JSC190423065I)

A. D. Cort, P. De Bernardin, G. Forte, F. Y. Mihan, Chem. Soc. Rev. 39 (2010) 3863–3874 (http://dx.doi.org/10.1039/B926222A)

C. T. Liu, A. A. Neverov, R. S. Brown, J. Am. Chem. Soc. 130 (2008) 13870–13872 (http://dx.doi.org/10.1021/ja805801j)

S. J. Hosseinimehr, S. Emami, S. M. Taghdisi, S. Akhlaghpoor, Eur. J. Med. Chem. 43 (2008) 557–561(https://dx.doi.org/10.1016/j.ejmech.2007.04.013)

Y. Q. Liu, X. M. Luo, H. J. Jiang, Z. Q. Zhang, Russ. J. Coord. Chem. Khimiya 44 (2018) 317–321(https://dx.doi.org/10.1134/S1070328418050032)

S. Liu, W. Cao, L. Yu, W. Zheng, L. Li, C. Fan, T. Chen, J. Chem. Soc. Dalt. Trans. 42 (2013) 5932–5940 (http://dx.doi.org/10.1039/C3DT33077J)

P. Patil, P. A. Khan, S. Zangade, Curr. Chem. Lett. 9 (2020) 183–198 (http://www.growingscience.com/ccl/Vol9/ccl_2020_5.pdf).




DOI: https://doi.org/10.2298/JSC200901068Z

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)