Molecular dynamic simulation study of molten caesium

Saeid Yeganegi, Vahid Moeini, Zohreh Doroodi

Abstract


Molecular dynamics simulations were performed to study thermo­dynamics and structural properties of expanded caesium fluid. Internal pres­sure, radial distribution functions (RDFs), coordination numbers and dif­fusion coefficients have been calculated at temperature range 700–1600 K and pres­sure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various tempe­ratures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature. 


Keywords


metal-nonmetal transition; MD simulation; internal pressure; RDF

Full Text:

PDF (442 kB)

References


C. T. Ewing, J. P. Spann, J. R. Stone, R. R. Miller, J. Chem. Eng. Data 16 (1971) 27

C. T. Ewing, J. R. Spann, J. P. Stone, E. W. Steinkuller, R. R. Miller, J. Chem. Eng. Data 55 (1971) 508

W. D. Weatherford, R. K. Johnston, M. L. Valtierra, J. Chem. Eng. Data 9 (1964) 520

F. Roehlich, F. Tepper, R. L. Rankin, J. Chem. Eng. Data 13 (1968) 518

V. Moeini, J. Chem. Eng. Data 55 (2010) 1093

K. Matsuda, S. Naruse, K. Hayashi, K. Tamura, M. Inui, Y. Kajihara, J. Phys.: Conf. Series 98 (2008) 012003

V.M. Nield, M.A. Howe, R. L. McGreevy, J. Phys.: Condens. Matter 3 (1991) 7519

R. Winter, F. Noll, T. Bodensteiner, W. Glaser, P. Chieux, F. Hensel, Z. Phys. Chem. 156 (1988) 145

H. Z. Zhuang, X.-W. Zou, Z.-Z. Jin, D.-C. Tian, Physica, B 253 (1998) 68

S. Jungst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55 (1985) 2160

F.C. Frank, Proc. R. Soc. Lond., A 215 (1952) 43

A. Agoado, Phys. Rev., B 63 (2001) 115404

U. Balucani, A. Torcini, R. Vallauri, Phys. Rev., B 47 (1993) 3011

J-F. Wax, R. Albaki, J.-L. Bretonnet, J. Non Cryst. Solids 312–314 (2002) 187

J.K. Baria, A. R. Jani, J. Non Cryst. Solids 356 (2010) 1696

I. Yokoyama, Physica, B 291 (2000) 145

N. Farzi, R. Safari, F. Kermanpoor, J. Mol. Liquids 137 (2008) 159

F. Juan-Coloa, D. Osorio-Gonzalez, P. Rozendo-Francisco, J. Lopez-Lemus, Mol. Simul. 33 (2007) 1162

D. Belashchenko, Inorg. Mater. 48 (2011) 79

A. Nichol, G. J. Ackland, Phys. Rev., B 93 (2016) 184101

V. V. Chaban, O. V. Prezhdo, J. Phys. Chem., A 120 (2016) 4302

R.P. Gupta, Phys. Rev., B 23 (1981) 6265

J.P.K. Doye, Comput. Mater. Sci. 35 (2006) 227

K. Michaelian, N. Rendon, I. L. Garzon, Phys. Rev., B 60 (1999) 2000

K. Michaelian, M. R. Beltran, I. L. Garzon, Phys. Rev., B 65 (2002) 041403.

M. Manninen, K. Manninen, A. Rytkönen, in: Latest Advances in Atomic Cluster Col¬lisions, J. P. Connerade, A. V. Solov'yov, Eds., World Scientific, Imperial College Press, London, 2004, p. 33

M. H. Ghatee, K. Shekoohi, Fluid Phase Equilib. 327 (2012) 14

J. A. Reyes-Nava, I. L. Garzion, M. R. Beltrian, K. Michelian, Rev. Mex. Fis. 48 (2002) 450

R. Winter, C. Pilgrrim, F. Hensel, J. Phys. IV 1 (1991) 45

F. Hensel, in: High Pressure Chemistry, Biochemistry and Materials Science, R. Winter, J. Jonas, Eds., NATO ASI Series, Springer, Aquafredda di Maratea, 1993, p. 401

F. Hensel,W.-C. Pilgrim, Int. J. Mod. Phys., B 6 (1992) 3709

E. Keshavarzi, G. Parsafar, J. Phys. Chem., B 103 (1999) 6584

V. Moeini, J. Chem. Eng. Data 55 (2010) 5673

G. Parsafar, E. A. Mason, Phys. Rev., B 49 (1994) 3049

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John Willey & Sons, Inc, New York, 1964, p. 647

G. Parsafar, E. A. Mason, J. Phys. Chem. 97 (1993) 9048

I. N. Levine, Physical Chemistry, McGraw Hill, New York, 2002, p. 55

F. Cleri, V. Rosato, Phys. Rev., B 48 (1993) 22

N. W. Ashcroft, N. D. Mermin, Solid state Physics, Holt, Rinehart and Winston, New York, 1976, p. 284

N. H. March, Liquid Metals: Concepts and Theory, Cambridge University Press, Cam¬bridge, 1990, p. 155

I. T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16 (2006) 1911

N. B. Vargaftik, E. B. Gelman, V. F. Kozhevnikov, S. P. Naursakov, Int. J. Thermophys. 11 (1990) 467

M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1989, p. 81

M. H. Ghatee, M. Bahadori, J. Phys. Chem., B 105 (2001) 11256

V. F. Kozhevnikov. S. P. Naurzakov, A. P. Senchenkov, J. Moscow Phys. Soc. 1 (1991) 171

V. Moeini, J. Phys. Chem., B 110 (2006) 3271

W. Freyland, Phys. Rev., B 20 (1979) 5104

K. Matsuda, K. Tamura, M. Inui, Phys. Rev. Lett. 98 (2007) 096401

K. Tamura, K. Matsuda, M. Inui, J. Phys.: Condens. Matter 20 (2008) 114102

Y. Marcus, Chem. Rev. 113 (2013) 6536

Y. Marcus, J. Mol. Liquids 79 (1999) 151

J. Yuan-Yuan, Z. Qing-Ming, G. Zi-Zheng, J. Guang-Fu, Chin. Phys., B 22 (2013) 083101

A. K. Metya, A. Hens, J. K. Singh, Fluid Phase Equilib. 313 (2012) 16.




DOI: http://dx.doi.org/10.2298/JSC160725018Y

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)