Synthesis of new derivatives of alepterolic acid via click chemistry Scientific paper

Main Article Content

Xin Jin
https://orcid.org/0000-0003-4227-0837
Jianguo Cao
https://orcid.org/0000-0001-5732-1903
Qingjie Zhao
https://orcid.org/0000-0002-3368-1290
Qi Wang
https://orcid.org/0000-0003-2466-7881
Hongmei Guo
https://orcid.org/0000-0003-4082-7363
Haji Akber Aisa
https://orcid.org/0000-0003-4652-6879
Guozheng Huang
https://orcid.org/0000-0002-5730-9549

Abstract

Alepterolic acid is a natural diterpenoid isolated from Aleuritopteris argentea (S. G. Gmél.) Fée, a fern with potential medicinal activity, used in China as a folk medicine to regulate menstruation and prevent cancer. Never­theless, there are few reports about the structural modification of this natural product. With the wide application of 1,2,3-triazole derivatives in medicines, pesticides, functional materials, the synthesis of 1,2,3-triazoles derivatives has attracted the attention of synthetic chemists. In this article, 23 new derivatives of alepterolic acid combined with 1,2,3-triazole were designed and synthesized by esterific­ation and click chemistry reaction in a fast, conventional and effi­cient way. All the products were obtained in good yields (72 to 97 %). The structure of these compounds was confirmed by 1H-, 13C-NMR and mass spec­tral data. The use of the easily available reactants and the common reaction conditions furnish an efficient method for the synthesis of alepterolic acid deri­vatives. The preparation of these compounds would enable further biological evaluation in the future.

Article Details

How to Cite
[1]
X. Jin, “Synthesis of new derivatives of alepterolic acid via click chemistry: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 917-925, Sep. 2021.
Section
Organic Chemistry

References

H. Ageta, K. Awata, Y. Otake, Proc. Symp. Nat. Org. Compd. 6 (1962) 136 (https://doi.org/10.24496/tennenyuki.6.0_136)

E. Wollenweber, P. Rüedi, D. S. Seigler, Z. Naturforsch., C 37 (1982) 1283 (https://doi.org/10.1515/znc-1982-11-1231)

N. D. Idippily, Q. Zheng, C. Gan, A. Quamine, M. M. Ashcraft, B. Zhong, B. Su, Bioorg. Med. Chem. Lett. 27 (2017) 2292 (https://doi.org/10.1016/j.bmcl.2017.04.046)

Z. Xu, S.-j. Zhao, Y. Liu, Eur. J. Med. Chem. 183 (2019) 111700 (https://doi.org/10.1016/j.ejmech.2019.111700)

F. Reck, F. Zhou, M. Girardot, G. Kern, C. J. Eyermann, N. J. Hales, R. R. Ramsay, M. B. Gravestock, J. Med. Chem. 48 (2005) 499 (https://doi.org/10.1021/jm0400810)

R. Raj, P. Singh, P. Singh, J. Gut, P. J. Rosenthal, V. Kumar, Eur. J. Med. Chem. 62 (2013) 590 (https://doi.org/10.1016/j.ejmech.2013.01.032)

C. X. Tan, Y. X. Shi, J. Q. Weng, X. H. Liu, W. G. Zhao, B. J. Li, J. Heterocycl. Chem. 51 (2014) 690 (https://doi.org/10.1002/jhet.1656)

L.-h. Zhou, A. Amer, M. Korn, R. Burda, J. Balzarini, E. De Clercq, E. R. Kern, P. F. Torrence, Antivir. Chem. Chemother. 16 (2005) 375 (https://doi.org/10.1177/095632020501600604)

F. Mir, S. Shafi, M. Zaman, N. P. Kalia, V. S. Rajput, C. Mulakayala, N. Mulakayala, I. A. Khan, M. Alam, Eur. J. Med. Chem. 76 (2014) 274 (https://doi.org/10.1016/j.ejmech.2014.02.017)

L.-y. Ma, L.-p. Pang, B. Wang, M. Zhang, B. Hu, D.-q. Xue, K.-p. Shao, B.-l. Zhang, Y. Liu, E. Zhang, Eur. J. Med. Chem. 86 (2014) 368 (https://doi.org/10.1016/j.ejmech.2014.08.010)

D. Dheer, V. Singh, R. Shankar, Bioorg. Chem. 71 (2017) 30 (https://doi.org/10.1016/j.bioorg.2017.01.010)

K. Bozorov, J. Zhao, H. A. Aisa, Bioorg. Med. Chem. 27 (2019) 3511 (https://doi.org/10.1016/j.bmc.2019.07.005)

Y. W. He, C. Z. Dong, J. Y. Zhao, L. L. Ma, Y. H. Li, H. A. Aisa, Eur. J. Med. Chem. 76 (2014) 245 (https://doi.org10.1016/j.ejmech.2014.02.029)

M. W. Pertino, C. Theoduloz, E. Butassi, S. Zacchino, G. Schmeda-Hirschmann, Molecules 20 (2015) 8666 (https://doi.org/10.3390/molecules20058666)

T. Kasemsuk, N. Saehlim, P. Arsakhant, G. Sittithumcharee, S. Okada, R. Saeeng, Bioorg. Med. Chem. 29 (2021) 115886 (https://doi.org/10.1016/j.bmc.2020.115886)

G. Wei, W. Luan, S. Wang, S. Cui, F. Li, Y. Liu, Y. Liu, M. Cheng, Org. Biomol. Chem. 13 (2015) 1507 (https://doi.org/10.1039/C4OB01605J)

S. Zhang, N. Feng, J. Huang, M. Wang, L. Zhang, J. Yu, X. Dai, J. Cao, G. Huang, Bioorg. Chem. 98 (2020) 103756 (https://doi.org/10.1016/j.bioorg.2020.103756)

J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 36 (2007) 1249 (https://doi.org/10.1039/B613014N)

C. Wang, L. Lu, H. Na, X. Li, Q. Wang, X. Jiang, X. Xu, F. Yu, T. Zhang, J. Li, Z. Zhang, B. Zheng, G. Liang, L. Cai, S. Jiang, K. Liu, J. Med. Chem. 57 (2014) 7342 (https://doi.org/10.1021/jm500763m)

J.-W. Zhao, J.-W. Guo, M.-J. Huang, Y.-Z. You, Z.-H. Wu, H.-M. Liu, L.-H. Huang, Steroids 150 (2019) 108431 (https://doi.org/10.1016/j.steroids.2019.108431)

P. Shanmugavelan, S. Nagarajan, M. Sathishkumar, A. Ponnuswamy, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett. 21 (2011) 7273 (https://doi.org/10.1016/j.bmcl.2011.10.048)

X. Meng, X. Xu, T. Gao, B. Chen, Eur. J. Org. Chem. (2010) 5409 (https://doi.org/10.1002/ejoc.201000610).