Use of experimental design to evaluate the adsorption of chromium (VI) by alginate/polyaniline beads Scientific paper
Main Article Content
Abstract
Low-cost decorated sodium alginate beads with polyaniline (Alg@PANI beads) were easily prepared using a cross-linking method, and employed for the adsorption of Cr(VI) from aqueous solutions. The effect of several influencing parameters, including temperature, contact time, Cr(VI) concentration, and adsorbent dosage, was investigated and optimized using central composite design (CCD) under response surface methodology (RSM). The analysis of variance (ANOVA) of the quadratic model and the analyzed model revealed that the models were statistically significant, with a low P-value (<0.0001) and a high correlation coefficient value (R2 = 0.93). The optimum parameters for total adsorption were as follows: adsorbent dose 0.027 g, pH 2, contact time 45 min, temperature 38 °C, and Cr(VI) concentration 29.24 ppm. The findings of this study indicate that the prepared Alg@PANI beads could be effectively used to remove Cr(VI) ions from aqueous solutions.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
References
R. Kumar, S. Kim, K. Kim, S. Lee, H. Park, Appl. Geochem. 88 (2017) 113 (https://doi.org/10.1016/j.apgeochem.2017.04.002)
C. R. Ramakrishnaiah, B. Prathima, Int. J. Eng. Res. Appl. 2 (2012) 599 (https://www.academia.edu/download/28318905/CT22599603.pdf)
P. Y. He, Y. J. Zhang, H. Chen, Z. C. Han, L. C. Liu, J. Hazard. Mater. 392 (2020) 122359 (https://doi.org/10.1016/j.jhazmat.2020.122359)
M. Bilal, J. Ali, N. Hussain, M. Umar, S. Shujah, D. Ahmad, J. Serb. Chem. Soc. 85 (2020) 265–277 (https://doi.org/10.2298/JSC181108001B)
J. S. Marciano, R. R. Ferreira, A. G. de Souza, R. F. S. Barbosa, A. J. de Moura Junior, D. S. Rosa, Int. J. Biol. Macromol. 181 (2021) 112 https://doi.org/10.1016/j.ijbiomac.2021.03.117)
H. Wang, X. Song, H. Zhang, P. Tan, F. Kong, J. Hazard. Mater. 384 (2020) 121459 (https://doi.org/10.1016/j.jhazmat.2019.121459)
F. A. Soriano Moranchell, J. M. Sandoval Pineda, J. N. Hernández Pérez, U. S. Silva-
-Rivera, C. A. Cortes Escobedo, R. de Guadalupe González Huerta, Int. J. Hydrog. Energy 45 (2020) 13683 (https://doi.org/10.1016/j.ijhydene.2020.01.050)
I. A. Katsoyiannis, M. Xanthopoulou, A. I. Zouboulis, Appl. Sci. 10 (2020) 802 (https://doi.org/10.3390/app10030802)
C. B. Esma, B. K. Ismet, B. Amel, S. A. Rim, H. Djawhar, D. Zoulikha, J. Macromol. Sci. A 52 (2015) 273 (https://doi.org/10.1080/10601325.2015.1007272)
A. Gadiri, A. Benkhaled, E. Choukchou-Braham, J. Macromol. Sci. 55 (2018) 393 (https://doi.org/10.1080/10601325.2018.1453258)
D. Heddi, A. Benkhaled, A. Boussaid, E. Choukchou-Braham, Phys. Chem. Res. 7 (2019) 731 (https://dx.doi.org/10.22036/pcr.2019.179510.1625)
U. O. Aigbe, O. A. Osibote, J. Environ. Chem. Eng. 8 (2020) 104503 (https://doi.org/10.1016/j.jece.2020.104503)
Z. Djemaa, K. I. Benabadji, E. Choukchou-braham, A. Mansri J. Macromol. Sci. 50 (2013) 679 (https://doi.org/10.1080/10601325.2013.792194)
K. Varaprasad, T. Jayaramudu, V. Kanikireddy, C. Toro, E. R. Sadiku, Carbohydr. Polym. 236 (2020) 116025 (https://doi.org/10.1016/j.carbpol.2020.116025)
A. M. Omer, R. E. Khalifa, Z. Hu, H. Zhang, C. Liu, X. Ouyang, Int. J. Biol. Macromol. 125 (2018) 1221 (https://doi.org/10.1016/j.ijbiomac.2018.09.097)
G. Cattelan, A. Guerrero Gerbolés, R. Foresti, P. P. Pramstaller, A. Rossini, M. Miragoli, C. Caffarra Malvezzi, Front. Bioeng. Biotechnol. 8 (2020) (https://doi.org/10.3389/fbioe.2020.00414)
W. A. Amer, M. M. Omran, M. M. Ayad, Colloids Surf. 562 (2018) 203 (https://doi.org/10.1016/j.colsurfa.2018.10.081)
E. Sharifpour, M. Ghaedi, A. Asfaram, M. Farsadrooh, E. A. Dil, H. Javadian, Int. J. Biol. Macromol. 152 (2020) 913 (https://doi.org/10.1016/j.ijbiomac.2020.02.236)
Y. Jiang, Z. Liu, G. Zeng, Y. Liu, B. Shao, Z. Li, Y. Liu, Int. J. Biol. Macromol. 25 (2018) 6158 (https://doi.org/10.1007/s11356-017-1188-3)
L. K. F. Araújo, A. A. Albuquerque, W. C. O. Ramos, A. T. Santos, S. H. V Carvalho, J. I. Soletti, M. D. Bispo, Environ. Dev. Sustain. 23 (2021) 11732 (https://doi.org/10.1007/s10668-020-01137-7)
E. Cheraghipour, M. Pakshir, J. Environ. Chem. Eng. 9 (2021) 104883 (https://doi.org/10.1016/j.jece.2020.104883)
M. Chabane, C. Melkaoui, B. Dahmani, S. Zahia Belalia, Ann. Chim. Sci. Des Mater. 44 (2020) 311 (https://doi.org/10.18280/acsm.440502)
A. Lace, D. Ryan, M. Bowkett, J. Cleary, Int. J. Environ. Res. Public Health 16 (2019) 1803 (https://doi.org/10.3390/ijerph16101803)
K. Azoulay, I. Bencheikh, A. Moufti, A. Dahchour, J. Mabrouki, S. El Hajjaji, Chem. Data Collect. 27 (2020) 100385 (https://doi.org/10.1016/j.cdc.2020.100385)
T. E. Abilio, B. C. Soares, J. C. José, P. A. Milani, G. Labuto, E. N. V. M. Carrilho, Environ. Sci. Pollut. Res. 28 (2021) 24816 (https://doi.org/10.1007/s11356-020-11726-8)
M. Pashai Gatabi, H. Milani Moghaddam, M. Ghorbani, J. Mol. Liq. 216 (2016) 117 (https://doi.org/10.1016/j.molliq.2015.12.087)
W. Zhao, P. Yuan, X. She, Y. Xia, S. Komarneni, K. Xi, Y. Che, X. Yao, D. Yang, J. Mater. Chem. A 3 (2015) 14188 (https://doi.org/10.1039/C5TA03199K)
N. Jiang, Y. Xu, Y. Dai, W. Luo, L. Dai, J. Hazard. Mater. 215–216 (2012) 17 (https://doi.org/10.1016/j.jhazmat.2012.02.026)
G. A. O. Fang, C. Yang, A. N. Liang, T. A. N. Ruiqin, L. I. Xiaomin, W. Guanghui, J. Wuhan Univ. Technol. Mater. Sci. 30 (2015) 1147 (https://doi.org/10.1007/s11595-015-1286-3)
R. Karthik, S. Meenakshi, Int. J. Biol. Macromol. 72 (2015) 711 (https://doi.org/10.1016/j.ijbiomac.2014.09.023)
R. A. Abbas, A. A. R. Farhan, H. N. Abdalraheem Al Ani, A. C. Nechifor, Rev. Chim. 70 (2019) 1108 (https://doi.org/10.37358/rc.19.4.7074).