Antimicrobial and anticancer activities of copolymers of tri-O-acetyl-D-glucal and itaconic anhydride Scientific paper

Main Article Content

Chetana Deoghare
https://orcid.org/0000-0003-2819-9720
Shruti Balaji
https://orcid.org/0000-0002-4589-5683
Savitha Dhandapani
https://orcid.org/0000-0002-9177-6546
Honey Srivastava
https://orcid.org/0000-0002-0696-675X
Anasuya Ganguly
https://orcid.org/0000-0002-4003-4462
Rashmi Chauhan
https://orcid.org/0000-0003-2998-2311

Abstract

This paper reports the synthesis and characterization of monomers itaconic anhydride (IA) and tri-O-acetyl-d-glucal (TAG) as well as 4,6-di-O-acetyl-d-glucal (PSG). The homopolymers and copolymers of IA and TAG were synthesized via free radical copolymerization in bulk, using azobisiso­but­yronitrile as an initiator with different feed ratios of monomers. Their struc­tural, molecular and thermal characterization was done using 1H-NMR spectro­scopy, gel permeation chromatography and differential scanning calorimetry, respectively. The glass transition temperature (Tg) of copolymers was found in the range of 139–145 °C. The highest Tg was found for IA–TAG2 copolymers, whereas IA–TAG4 copolymer showed lowest Tg. The molecular weight of the copolymers was in the range 5157–5499 g mol-1. The monomer TAG under­goes Ferrier rearrangement in water to give PSG. The antimicrobial activity of IA, TAG, PSG and IA–TAG copolymers was studied using the minimum mic­ro­bicidal concentration-broth dilution method. TAG, IA and PSG, as well as homopolymer and copolymers of IA and TAG are excellent antimicrobial agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
C. Deoghare, S. Balaji, S. Dhandapani, H. Srivastava, A. Ganguly, and R. Chauhan, “Antimicrobial and anticancer activities of copolymers of tri-O-acetyl-D-glucal and itaconic anhydride: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 5, pp. 629–640, May 2022.
Section
Polymers

References

C. Cesa-Luna, A. Baez, V. Quintero-Hernández, J. De La Cruz-Enríquez, M. D. Castañeda-Antonio, J. Muñoz-Rojas, Acta Biol. Colomb. 25 (2020) 140 (http://dx.doi.org/10.15446/abc.v25n1.76867)

P. K. Mantravadi, K. A. Kalesh, R. C. J. Dobson, A. O. Hudson, A. Parthasarathy, Antibiotics 8 (2019) 8 (http://doi.org/10.3390/antibiotics8010008)

P. K. Senthilkumar, D. Reetha, Eur. Rev. Med. Pharmacol. Sci. 15 (2011) 1034 (http://www.europeanreview.org/article/1031)

C. M. Franco, B. I. Vázquez, Antibiotics 9 (2020) 217 (http://dx.doi.org/10.3390/antibiotics9050217)

E. Chiellini, F. Chiellini, P. Cinelli, in Degradable Polymers, G. Scott, Ed., Springer, Dordrecht, 2002, p. 163 (http://doi.org/10.1007/978-94-017-1217-0_7)

Y. Zhu, C. Romain, C. K. Williams, Nature 540 (2016) 354 (http://dx.doi.org/10.1038/nature21001)

G. L. Gregory, E. M. Lopez-Vidal, A. Buchard, Chem. Commun. 53 (2017) 2198 (http://dx.doi.org/10.1039/c6cc09578j)

W. Priebe, I. Fokt, G. Grynkiewicz, in Glycoscience, B. Fraser-Reid, K. Tatsuta, J. Thiem, Eds., Springer-Verlag, Berlin, 2008, p. 699 (http://dx.doi.org/10.1007/978-3-540-30429-6_15)

T. Willke, K.-D. Vorlop, Appl. Microbiol. Biotechnol. 56 (2001) 289 (http://dx.doi.org/10.1007/s002530100685)

S. Shang, S. J. Huang, R. A. Weiss, Polymer 50 (2009) 3119 (http://dx.doi.org/10.1016/j.polymer.2009.05.012)

R. Chauhan, V. Choudhary, J. Appl. Polym. Sci. 109 (2008) 987 (http://doi.org/10.1002/app.28099)

L. Sollka, K. Lienkamp, Macromol. Rapid Commun. 42 (2021) 2000546 (http://dx.doi.org/10.1002/marc.202000546)

S. M. Osman, M. H. El-Newehy, S. S. Al-Deyab, A. El-Faham, Chem. Cent. J. 6 (2012) (http://dx.doi.org/10.1186/1752-153X-6-85)

P. S. Nayak, B. Narayana, B. K. Sarojini, S. Sheik, K. S. Shashidhara, K. R. Chandrashekar, J. Taibah Univ. Sci. 10 (2016) 823 (http://doi.org/10.1016/j.jtusci.2014.09.005)

R. Ashique, R. Chirakal, G. J. Schrobilgen, D. W. Hughes, T. Farncombe, K. Gulenchyn, R. Labiris, T. Truman, C. Saab, in ACS Symp. Ser. A, Vol. 1003, A. Gakh, K. L. Kirk, Eds., American Chemical Society, Washington DC, , 2009, pp. 211–235 (http://dx.doi.org/10.1021/bk-2009-1003.ch010)

M.-J. Han, C.-W. Lee, K.-H. Kim, W.-Y. Lee, Bull. Korean Chem. Soc. 12 (1991) 85 (http://www.koreascience.or.kr/article/JAKO199113464455707.page)

C. Cottet, A. G. Salvay, M. A. Peltzer, M. Fernández-García, Polymers 13 (2021) 200 (https://doi.org/10.3390/polym13020200)

R. Chauhan, V. Choudhary, J. Appl. Polym. Sci. 115 (2010) 491 (https://doi.org/10.1002/app.30824)

K. Bae, S. H. Koo, W. Seo, Arch. Pharm. Res. 14 (1991) 41 (https://doi.org/10.1007/BF02857812)

Y. Xie, W. Yang, F. Tang F., X. Chen, L. Ren, Curr. Med. Chem. 22 (2015) 132 (https://doi.org/10.2174/0929867321666140916113443)

F. Farhadi, B. Khameneh, M. Iranshahi, M. Iranshahy, Phytother. Res. 33 (2019) 13 (https://doi.org/10.1002/ptr.6208)

T. J. Cuthbert, B. Hisey, T. D. Harrison, J. F. Trant, E. R. Gillies, P. J. Ragogna, Angewandte Chemie 57 (2018) 12707 (https://doi.org/10.1002/anie.201806412)

G. L. Y. Woo, M. W. Mittelman, J. P. Santerre Biomaterials 21 (2000) 1235 (https://doi.org/10.1016/s0142-9612(00)00003-x).

Similar Articles

You may also start an advanced similarity search for this article.