Electrochemical reduction of tungsten(VI) oxide from a eutectic melt CaCl2–NaCl under potentiostatic conditions Scientific paper

Main Article Content

Olha Bosenko
Serhii Kuleshov
Valerii Bykov
Anatoliy Omel'chuk


The paper presents results of the study of the electrochemical red­uction of tungsten(VI) oxide in a melt of the eutectic composition 52 mol% CaCl2 and 48 mol% NaCl at a liquid gallium electrode. Scanning electron mic­ro­scopy and X-ray diffraction methods were used to study the microstructures of the obtained powders. The Rietveld method which is based on diffraction patterns were used to calculate the quantitative content of phases in WO3 red­uction products. The ther­modynamic properties of the electrolysis process were investigated by voltam­metry. It is shown that a necessary condition for the electrochemical reduction of WO3 is electrolysis at potentials higher than the standard electrode potential of decomposition of calcium tungstate, which is formed by the interaction of tungsten oxide with calcium chloride. The red­uction can take place by both electrochemical and metallothermic mechanisms depending on the conditions of electrolysis. The reduction product is fine tung­sten with a particle crystallite size of up to 1 μm.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
O. Bosenko, S. . Kuleshov, V. . Bykov, and A. . Omel’chuk, “Electrochemical reduction of tungsten(VI) oxide from a eutectic melt CaCl2–NaCl under potentiostatic conditions: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 879–889, Mar. 2022.


V. Gavrish, G. Baranov, T. Chayka, N. Derbasova, in XII International Conference Radiation-thermal Effects and Processes in Inorganic Materials, Tomsk, Russian Federation, 2016, IOP Conf. Series: Materials Science and Engineering, IOP Publishing, 2017, 012013 (http://dx.doi.org/doi:10.1088/1757-899X/168/1/012013)

E. G. Sokolov, A. V. Ozolin, S. A. Arefieva, in Materials Science Forum, Trans Tech Publications Ltd., Switzerland, 2020, p. 511 (http://dx.doi.org/10.4028/www.scientific.net/MSF.992.511)

V. M. Gavrish, G. A. Baranov, T. V. Chayka, N. M. Derbasova, A. V. Lvov, Y. M. Matsuk, in International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials, Tomsk, Russia, 2015, IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2016, 012028 (http://dx.doi.org/10.1088/1757-899X/110/1/012028)

E. Lassner, W.-D. Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, Springer, Boston, MA, 1999, p. 422 (http://dx.doi.org/10.1007/978-1-4615-4907-9)

R. Sarathi, T. K. Sindhu, S. R. Chakravarthy, A. Sharma, K. V. Nagesh, J. Alloys Compd. 475 (2009) 658 (http://dx.doi.org/10.1016/j.jallcom.2008.07.092)

U.S. Department of the Interior, U.S. Geological Survey, Metal prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report 2012–5188, Pubs.Usgs.Gov, Reston, VA, 2013

E. Lassner, W.-D. Schubert, E. Lüderitz, H. U. Wolf, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012 (http://dx.doi.org/10.1002/14356007.a27_229)

Y. Wu, Z. Lv, H. Sun, and J. Dang, J. Mater. Res. Technol. 8 (2019) 4687 (https://doi.org/10.1016/j.jmrt.2019.08.014)

N. E. Fouad, K. M. E. Attyia, M. I. Zaki, Powder Technol. 74 (1993) 31 (https://doi.org/10.1016/0032-5910(93)80005-U)

G. Z. Chen, D. J. Fray, in Non-Ferrous Metals Processing, TMS Light Metals, RresearchGate, Charlotte, NC, 2004, p. 881

A. M. Abdelkader, K. T. Kilby, A. Cox, D. J. Fray, Chem. Rev. 113 (2013) 2863 (https://doi.org/10.1021/cr200305x)

L. Zhang, Z. Nie, X. Xi, L. Ma, X. Xiao, M. Li, Metall. Mater. Trans., B 49 (2017) 334 (https://doi.org/10.1007/s11663-017-1125-3)

J. Li, X. Y. Zhang, Y. Bin Liu, Y. G. Li, R. P. Liu, Rare Met. 32 (2013) 512. (https://doi.org/10.1007/s12598-013-0156-4)

J. Li, Y. Li, L. Liu, Z. Cai, X. Zhang, R. Liu, Rare Met. Mater. Eng. 42 (2013) 2237 (https://doi.org/10.1016/s1875-5372(14)60028-x)

D. Tang, W. Xiao, H. Yin, L. Tian, D. Wang, J. Electrochem. Soc. 159 (2012) E139 (https://doi.org/10.1149/2.113206jes)

M. Erdoǧan, I. Karakaya, Metall. Mater. Trans., B 41 (2010) 798 (https://doi.org/10.1007/s11663-010-9374-4)

R. Abdulaziz, L. D. Brown, D. Inman, S. Simons, P. R. Shearing, D. J. L. Brett, Electrochem. Commun. 41 (2014) 44 (https://doi.org/10.1016/j.elecom.2014.01.022)

T. Nohira, Т. Ide, X. Meng, Y. Norikawa, and K. Yasuda, J. Electrochem. Soc. 168 (2021) 046505 (https://doi.org/10.1149/1945-7111/abf266)

The Fact™ and FactSage™ databases, http://www.crct.polymtl.ca/fact/documentation/FS_All_PDs.htm (accessed 5.9.21)

A. P. Kreshkov, Fundamentals of Analytical Chemistry, Chemistry, Moscow, 1970, p. 472 (https://www.twirpx.com/file/379406)

H. Putz, Match! Phase Analysis using powder diffraction, Crystal impact, Bonn, 2020, p. 143 (http://www.crystalimpact.com/download/match3/Manual.pdf)

Crystallographic Computing System for Standard and Modulated Structures Jana 2006, http://jana.fzu.cz (accessed 7.9.21)

Crystallography Open Database, http://www.crystallography.net (accessed 7.9.21)

I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, Weinheim, 1995, p. 1885 (lSBN 3-527-28745-0)

Yu. K. Delimarsky, Electrochemistry of ionic melts, Metallurgy, Moscow, 1978, pp. 223–224 (https://ua1lib.org/book/1042044/0e752b)

D. J. Fray, G. Z. Chen, T. W. Farthing, (Cambridge University), UK Patent WO 9964638, PCT/GB 99/01781 (1999).