Statistical optimization of lipase production from oil mill effluent by Acinetobacter sp. KSPE71 Scientific paper

Main Article Content

Selvapriya Kumarswamy
https://orcid.org/0000-0002-8582-2294
Jayanthi Singaram

Abstract

The present study investigated the valorisation of oil-rich residues of coconut oil mill effluent (COME) as a potential growth medium for the micro­bial production of extracellular lipase. The bacterial species isolated from oil mill effluent, Acinetobacter sp. KSPE71 was tested for its efficiency to grow and produce lipase in undiluted COME and 0.2 % yeast extract and 0.2 % NH4Cl sup­plemented COME. In this connection, the process parameters such as pH, tem­pe­rature, agitation speed, and inoculum size were optimized to max­i­mize the produc­tion using a central composite design in the Response surface methodology. At the optimized state of pH 7.5, 35 °C, 150 rpm with 0.6 % ino­culum size, a maximum of 3.95 U mL-1 activity was obtained, four-fold higher than the basal condition. At this stage, 73 % of the lipid content was degraded. The present work results imply that the oil mill effluent can be used as a cheaper production medium for lipase and the new isolate Acinetobacter sp. KSPE71 as a potential lipase pro­ducer. The degradation of oil waste along with the production of the valuable pro­duct has multiple advantages of cost reduct­ion of lipase and environmental concern.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Kumarswamy and J. Singaram, “Statistical optimization of lipase production from oil mill effluent by Acinetobacter sp. KSPE71: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 9, pp. 997–1010, Jul. 2022.
Section
Biochemistry & Biotechnology

References

C. E. C. de Souza, B. D. Ribeiro, M. A. Z. Coelho, Appl. Biochem. Biotechnol. 189 (2019) 933 (https://doi.org/10.1007/s12010-019-03047-5)

C. Bernal, F. Guzman, A. Illanes, L. Wilson, Food Chem. 239 (2018) 189 (https://doi.org/10.1016/j.foodchem.2017.06.105)

R. Balakrishnaraja, V. Nisha, S. Geethadevi, C. Monisha, S. Devi, M. Pravinkumar, J. Revathi, K. Selvapriya, J. Adv. Chem. 12 (2016) 5010 (https://rajpub.com/index.php/jac/article/view/1052)

L. C. Phukon, R. Chourasia, M. Kumari, T. K. Godan, D. Sahoo, B. Parameswaran, A. K. Rai, Bioresour. Technol. 309 (2020) 123352 (https://doi.org/10.1016/J.BIORTECH.2020.123352)

E. Vanleeuw, S. Winderickx, K. Thevissen, B. Lagrain, M. Dusselier, B. P. A. Cammue, B. F. Sels, ACS Sustainable Chem. Eng. 7 (2019) 15828 (https://doi.org/10.1021/acssuschemeng.9b03257)

G. B. Pinto, F. M. L. Mendes, A. M. de S. Antunes, Mini-Rev. Org. Chem. 17 (2020) 701 (https://doi.org/10.2174/1570193X16666190913181530)

F. J. Contesini, M. G. Davanço, G. P. Borin, K. G. Vanegas, J. P. G. Cirino, R. R. de Melo, U. H. Mortensen, K. Hildén, D. R. Campos, P. de O. Carvalho, Catalysts 10 (2020) 1032 (https://doi.org/10.3390/catal10091032)

A. Sharma, S. Balda, N. Gupta, N. Capalash, P. Sharma, J. Cleaner Prod. 271 (2020) 122573 (https://doi.org/10.1016/J.JCLEPRO.2020.122573)

S. Hama, H. Noda, A. Kondo, Curr. Opin. Biotechnol. 50 (2018) 57 (https://doi.org/10.1016/J.COPBIO.2017.11.001)

F. L. C. Almeida, B. M. Travália, I. S. Gonçalves, M. B. S. Forte, Biofuels, Bioprod. Biorefin. 15 (2021) 1141 (https://doi.org/10.1002/BBB.2183)

Z. Ning, J. Ji, Y. He, Y. Huang, G. Liu, C. Chen, Energy Fuels 30 (2016) 7326 (https://doi.org/10.1021/acs.energyfuels.6b01097)

C. H. Okino-Delgado, D. Z. do Prado, R. Facanali, M. M. O. Marques, A. S. Nascimento, C. J. da C. Fernandes, W. F. Zambuzzi, L. F. Fleuri, PLoS One 12 (2017) e0186246 (https://doi.org/10.1371/JOURNAL.PONE.0186246)

N. Sarmah, D. Revathi, G. Sheelu, K. Y. Rani, S. Sridhar, V. Mehtab, C. Sumana, Biotechnol. Prog. 34 (2017) 5 (https://doi.org/10.1002/BTPR.2581)

X. Li, N. Shimizu, E. R. Rene, M. C. Veiga, Fermentation 7 (2021) 284 (https://doi.org/10.3390/FERMENTATION7040284)

Markets and Markets, https://www.marketsandmarkets.com/PressReleases/microbial-lipase.asp (accessed October 24, 2021)

M. Lopes, S. M. Miranda, I. Belo, Crit. Rev. Environ. Sci. Technol. 50 (2020) 2583 (https://doi.org/10.1080/10643389.2019.1704602)

T. Ahmad, T. Belwal, L. Li, S. Ramola, R. M. Aadil, Abdullah, Y. Xu, L. Zisheng, Trends Food Sci. Technol. 99 (2020) 21 (https://doi.org/10.1016/j.tifs.2020.02.017)

H. Kamilah, A. Al-Gheethi, T. A. Yang, K. Sudesh, Arab. J. Sci. Eng. 43 (2018) 3453 (https://doi.org/10.1007/s13369-018-3118-1)

P. Carlozzi, M. Seggiani, A. Capperucci, D. Tanini, P. Cinelli, A. Lazzeri, J. Biotechnol. 295 (2019) 28 (https://doi.org/10.1016/j.jbiotec.2019.02.006)

T. Szymczak, J. Cybulska, M. Podleśny, M. Frąc, Agriculture 11 (2021) 540 (https://doi.org/10.3390/agriculture11060540)

M. Lopes, S. M. Miranda, J. M. Alves, A. S. Pereira, I. Belo, Eur. J. Lipid Sci. Technol. 121 (2019) 1800188 (https://doi.org/10.1002/ejlt.201800188)

R. K. Sahoo, A. Das, M. Gaur, A. Sahu, S. Sahoo, S. Dey, P. K. S. M. Rahman, E. Subudhi, Prep. Biochem. Biotechnol. 50 (2020) 578 (https://doi.org/10.1080/10826068.2020.1719513)

S. Steudler, A. Werner, T. Walther, Solid State Fermentation, Advances in Biochemical Engineering/Biotechnology, Springer, Switzerland AG, Cham, 2019, pp. 51–81 (https://doi.org/10.1007/10_2019_85)

O. A. S. Moftah, S. Z. Grbavcic, W. A. S. Moftah, N. D. Lukovic, O. L. Prodanovic, S. M. Jakovetic, Z. D. Kneževic-Jugovic, J. Serb. Chem. Soc. 78 (2013) 781 (https://doi.org/10.2298/JSC120905005M)

V. Salgado, C. Fonseca, T. Lopes da Silva, J. C. Roseiro, A. Eusébio, Waste Biomass Valorization 11 (2020) 3207 (https://doi.org/10.1007/S12649-019-00725-7)

M. Lopes, C. Araújo, M. Aguedo, N. Gomes, C. Gonçalves, J. A. Teixeira, I. Belo, J. Chem. Technol. Biotechnol. 84 (2009) 533 (https://doi.org/10.1002/JCTB.2075)

P. Kanmani, K. Kumaresan, J. Aravind, Electron. J. Biotechnol. 18 (2015) 20 (https://doi.org/10.1016/j.ejbt.2014.11.003)

A. Eaton, Standard Methods for the Examination of Water and Wastewater, 21st ed., APHA-AWWA-WEF, Washington DC, 2005

G. L. Miller, Anal. Chem. 31 (2002) 426 (https://doi.org/10.1021/ac60147a030)

O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (https://pubmed.ncbi.nlm.nih.gov/14907713/)

U. K. Winkler, M. Stuckmann, J. Bacteriol. 138 (1979) 663 (https://doi.org/10.1128/jb.138.3.663-670.1979)

P. Gururaj, S. Ramalingam, G. Nandhini Devi, P. Gautam, Braz. J. Microbiol. 47 (2016) 647 (https://doi.org/10.1016/j.bjm.2015.04.002)

M. O. Al-Limoun, K. M. Khleifat, K. Y. Alsharafa, H. N. Qaralleh, S. A. Alrawashdeh, Biocatal. Biotransform. 37 (2019) 139 (https://doi.org/10.1080/10242422.2018.1506445)

M. O. Allimoun, M. R. Ananzeh, K. M. Khleifat, Int. J. Biosci. 6 (2015) 44 (https://doi.org/10.12692/ijb/6.10.44-56)

R. Patel, V. Prajapati, U. Trivedi, K. Patel, 3 Biotech 10 (2020) 508 (https://doi.org/10.1007/S13205-020-02501-0)

A. Isiaka Adetunji, A. Olufolahan Olaniran, Biotechnol. Biotechnol. Equip. 32 (2018) (https://doi.org/10.1080/13102818.2018.1514985)

A. D’Annibale, G. G. Sermanni, F. Federici, M. Petruccioli, Bioresour. Technol. 97 (2006) 1828 (https://doi.org/10.1016/J.BIORTECH.2005.09.001).