Design of benzimidazoles, benzoxazoles, benzothiazoles and thiazolopyridines as leukotriene A4 hydrolase inhibitors through 3D-QSAR, docking and molecular dynamics Scientific paper

Main Article Content

Marcos Lorca
https://orcid.org/0000-0003-3729-0980
Mario Faundez
https://orcid.org/0000-0002-5507-3579
C. David Pessoa-Mahana
https://orcid.org/0000-0002-9571-0173
Benjamin Diethelm-Varela
https://orcid.org/0000-0002-5465-6924
Gonzalo Recabarren-Gajardo
https://orcid.org/0000-0002-7763-7830
Daniela Millan
https://orcid.org/0000-0002-4264-7967
Ismail Celik
https://orcid.org/0000-0002-8146-1663
Marco Mellado
https://orcid.org/0000-0001-9577-5180
Ileana Araque
https://orcid.org/0000-0003-3516-2176
Jaime Mella
https://orcid.org/0000-0002-2434-8461
Javier Romero-Parra
https://orcid.org/0000-0001-7421-4894

Abstract

Human leukotriene A4 hydrolase enzyme (LTA4H) catalyses the bio­transformation of the inactive precursor leukotriene A4 (LTA4) to the bioactive Leukotriene B4 (LTB4), which causes many inflammatory responses in the human body. Therefore, the selective inhibition of this enzyme becomes a use­ful strategy for the treatment of several illnesses such as asthma, allergic rhin­itis, cardio­vas­cular diseases, and cancer. Herein we report a 3D-QSAR/CoMFA and CoMSIA study on a series of 47 benzimidazoles, benzo­xazoles, benzothiazoles and thiazolo­pyridines reported as potent LTA4H inhibitors. Good statistical parameters were obtained for the best model (q2 = 0.568,
r2ncv = 0.891 and r2test = 0.851). A new series of 10 compounds capable of inhibiting leukotriene A4 hydrolase with high potency was presented. All designed inhi­b­itors showed low IC50 in nano- and sub-nanomolar ranges, when they were evaluated in 3D-QSAR models. Sub­sequently, the designed mole­cules, as well as the least and most active compounds were subjected to dock­ing and mole­cular dynamics studies into LTA4H. In conclusion, we summar­ised a thorough structure–activity relationship (SAR) of LTA4H inhibitors of heterocyclic structure. These models can be used for the rational proposal of new inhibitors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Lorca, “Design of benzimidazoles, benzoxazoles, benzothiazoles and thiazolopyridines as leukotriene A4 hydrolase inhibitors through 3D-QSAR, docking and molecular dynamics: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 1, pp. 25–39, Dec. 2022.
Section
Theoretical Chemistry
Author Biography

Javier Romero-Parra, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Santiago 8380544, Chile

    

References

J. Z. Haeggström, A. Rinaldo-Matthis, C. E. Wheelock, A. Wetterholm, Biochem. Biophys. Res. Commun. 396 (2010) 135 (https://doi.org/10.1016/j.bbrc.2010.03.140)

R. J. Snelgrove, Thorax 66 (2011) 550 (https://doi.org/10.1136/thoraxjnl-2011-200234)

N. Gueli, W. Verrusio, A. Linguanti, W. De Santis, N. Canitano, F. Ippoliti, V. Marigliano, M. Cacciafesta, Arch. Gerontol. Geriatr. 52 (2011) e36 (https://doi.org/10.1016/j.archger.2010.04.014)

T. D. Penning, L. J. Askonas, S. W. Djuric, R. A. Haack, S. S. Yu, M. L. Michener, G. G. Krivi, E. Y. Pyla, Bioorg. Med. Chem. Lett. 5 (1995) 2517 (https://doi.org/10.1016/0960-894X(95)00441-U)

N. L. Rao, P. J. Dunford, X. Xue, X. Jiang, K. A. Lundeen, F. Coles, J. P. Riley, K. N. Williams, C. A. Grice, J. P. Edwards, J. Pharmacol. Exp. Ther. 321 (2007) 1154 (https://doi.org/10.1124/jpet.106.115436)

W. Barchuk, J. Lambert, R. Fuhr, J.Z. Jiang, K. Bertelsen, A. Fourie, X. Liu, P.E. Silkoff, E.S. Barnathan, R. Thurmond, Pulm. Pharmacol. Ther. 29 (2014) 15 (https://doi.org/10.1016/j.pupt.2014.06.003)

E. Pontiki, D. Hadjipavlou-Litina, Med. Res. Rev. 28 (2008) 39 (https://doi.org/10.1002/med.20099)

P. R. Bernstein, Am. J. Respir. Crit. Care. Med. 157 (1998) S220 (https://doi.org/10.1164/ajrccm.157.6.mar-3)

L. V. Sonawane, S. B. Bari, Acta Pharm. Sin., B 45 (2010) 615 (http://www.ncbi.nlm.nih.gov/pubmed/20931764)

T. Sundarapandian, J. Shalini, S. Minky, A. Venkatesh, W. L. Keun, Future Med. Chem. 5 (2013) 27 (https://doi.org/10.4155/fmc.12.184)

V. M. Tanis, G. M. Bacani, J. M. Blevitt, C. C. Chrovian, S. Crawford, A. De Leon, A. M. Fourie, L. Gomez, C. A. Grice, K. Herman, Bioorg. Med. Chem. Lett. 22 (2012) 7504 (https://doi.org/10.1016/j.bmcl.2012.10.036)

C. A. Grice, K. L. Tays, B. M. Savall, J. Wei, C. R. Butler, F. U. Axe, S. D. Bembenek, A. M. Fourie, P. J. Dunford, K. Lundeen, J. Med. Chem. 51 (2008) 4150 (https://doi.org/10.1021/jm701575k)

D. R. Davies, B. Mamat, O. T. Magnusson, J. Christensen, M. H. Haraldsson, R. Mishra, B. Pease, E. Hansen, J. Singh, D. Zembower, J. Med. Chem. 52 (2009) 4694 (https://doi.org/10.1021/jm900259h)

M. Lorca, Y. Valdes, H. Chung, J. Romero-Parra, C.D. Pessoa-Mahana, J. Mella, Int. J. Mol. Sci. 20 (2019) 2510 (https://doi.org/10.3390/ijms20102510)

K. Roy, S. Kar, P. Ambure, Chemometr. Intell. Lab. Syst. 145 (2015) 22 (https://doi.org/10.1016/j.chemolab.2015.04.013)

R. Kumari, R. Kumar, A. Lynn, J. Chem. Inf. Model. 54 (2014) 1951 (https://doi.org/10.1021/ci500020m).