DBUH+I3 complex an efficient catalyst for the synthesis of 2-phenyl benzimidazole and benzothiazole derivatives

Main Article Content

Ramesh Gawade
https://orcid.org/0000-0002-3754-4488
Pramod Kulkarni
https://orcid.org/0000-0001-5281-4602

Abstract

Herein, we have reported the facile synthesis of various benzimid­az­ole/benzothiazole by using DBU–iodine–iodide as a green and simple catal­yst. The R3NHI3 complexes have been formed by reacting an aqueous mixture of ammonium iodide and molecular iodine with the aqueous solution of amine. The structure of R3NHI3 complexes has been confirmed by spectroscopic tech­niques. The prepared amine–iodine complexes were screened as a catalysts in the synthesis of benzimidazole/benzothiazoles. Among the screened catal­ysts DBUHI3 complex has been found as most efficient catalyst. The syn­thesis of benzimidazoles and benzothiazoles has been achieved with the react­ion of o-phenylene diamine/o-aminothiophenol and various substituted aryl aldehyde using DBUHI3 as a catalyst. The present protocol has offered some advantages over other reported protocols such as the mild reaction condition, commercially available precursors, inexpensive catalyst, short reaction time, the broad scope of the substrate, high yield, simple isolation of the product and environmentally benign method.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Gawade and P. Kulkarni, “DBUH+I3 complex an efficient catalyst for the synthesis of 2-phenyl benzimidazole and benzothiazole derivatives”, J. Serb. Chem. Soc., vol. 88, no. 10, pp. 959–974, Oct. 2023.
Section
Organic Chemistry

References

J. Velk, V. Baliharov, J. Fink-Gremmels, S. Bull, J. Lamka, L. Sklov, Res. Vet. Sci. 76 (2004) 95 (https://doi.org/10.1016/j.rvsc.2003.08.005)

C. D. Hadole, J. D. Rajput, R. S. Bendre, Org. Chem. Curr. Res. 7 (2018) 195 (https://doi.org/10.4172/2161-0401.1000195)

P. C. Sharmal, A. Sinhmar, A. Sharma, H. Rajak , D.P. Pathak, J. Enzym. Inhib. Med. Chem. 28 (2013) 240 (https://doi.org/10.3109/14756366.2012.720572)

V. S. Padalkar, B. N. Borse, V. D. Gupta, K. R. Phatangare, V. S. Patil, P. G. Umape, N. Sekar, Arabian J. Chem. 9 (2016) 1125 (https://doi.org/10.1016/j.arabjc.2011.12.006)

M. A. Abdelgawad, R. B. Bakr, H. A. Omar, Bioorg. Chem. 74 (2017) 82 (https://doi.org/10.1016/j.bioorg.2017.07.007)

I. Roberta, C. Antonio, M. Silvia, C. Paola, S. Gabriele, P. Sandra, S. Simona, L. Roberta, S. Giuseppina, Viruses 13 (2021) 58 (https://doi.org/10.3390/v13010058)

S. Noel, S. Cadet, E. Gras, C. Hureau, Chem. Soc. Rev. 42 (2013) 7747 (https://doi.org/10.1039/C3CS60086F)

Y. Gao, W. Xu, H. Ma, A. Obolda, W. Yan, S. Dong, M. Zhang, F. Li, Chem. Mater. 29 (2017) 6733 (https://doi.org/10.1021/acs.chemmater.7b01521)

G. Singh, H. K. Sahota, Plant Physiol. Biochem. 132 (2018) 166 (https://doi.org/10.1016/j.plaphy.2018.09.001)

M. Faheem, Anjali Rathaur, A. Pandey, V. K. Singh, A. K. Tiwari, Chem. Select. 5 (2020) 3981 https://doi.org/10.1002/slct.201904832

X. Gao, J. Liu, X. Zuo, X. Feng, Y. Gao, Molecules 25 (2020) 1675 (https://doi.org/10.3390/molecules25071675)

Zhan- Zhan-Hui Zhang, Liang Yin, Yong-Mei Wang, Catal. Commun. 8 (2007) 1126 (http://dx.doi.org/10.1016/j.catcom.2006.10.022)

Rui Wang, Xiao-xia Lu, Xiao-qi Yu, Lin Shi, Yong Sun, J. Mol. Catal., A 266 (2007) 198 (https://doi.org/10.1016/j.molcata.2006.04.071)

S. Rostamizadeh, M. Nojavan, F. Heshmatpoor, Heterocycl. Commun. 13 (2007) 305 (https://doi.org/10.1515/HC.2007.13.5.305)

F. Abdellaoui, C. Youssef, H. Ben Ammar, T. Roisnel, J. F. Soule, H. Doucet, ACS Catal. 6 (2016) 4248 (https://doi.org/10.1021/acscatal.6b00678)

P.R. Fernandes, P. Patil R. Shete, J. Chem. Rev. 4 (2022) 25 (https://dx.doi.org/10.22034/jcr.2022.316076.1132)

M. Bharathi, S. Indira, G. Vinoth, T. Mahalakshmi, E. Induja, K. Shamuga Bharathi, J. Coord. Chem. 73 (2020) 1 (http://dx.doi.org/10.1080/00958972.2020.1730335)

S. Majumdar, M. Chakraborty, N. Pramanikb, D. K. Maiti, RSC Adv. 5 (2015) 51012 (https://doi.org/10.1039/C5RA08183A)

T. T. Nguyen, X.-T. T. Nguyen, T.-L. H. Nguyen, P. H. Tran, ACS Omega 4 (2019) 368 (https://doi.org/10.1021/acsomega.8b02932)

M. A. Tzani, C. Gabriel, I. N. Lykakis, Nanomaterials 10 (2020) 2405 (https://doi.org/10.3390/nano10122405)

K. B. Rasal, Ganapati D. Yadav, Catal. Today (2017) 309 (http://dx.doi.org/10.1016/j.cattod.2017.10.014)

S. Singhal, P.j Khanna, S. S. Panda, and L. Khanna, J. Heterocycl. Chem. 56 (2016) 2702 (https://doi.org/10.1002/jhet.3649)

J. Kovvuri, B. Nagaraju, A. Kamal, A. K. Srivastava, ACS Comb. Sci. 18 (2016) 644 (https://doi.org/10.1021/acscombsci.6b00107)

N. H. Cano, J. G. Uranga, M. Nardi, A. Procopio, D. A. Wunderlin, and A. N. Santiago, Beilstein J. Org. Chem. 12 (2016) 2410 (https://doi.org/10.3762/bjoc.12.235)

S. Bonacci, G. Iriti, S. Mancuso, P. Novelli, R. Paonessa, S. Tallarico, and M. Nardi Catalysts 10 (2020) 845 (https://doi.org/10.3390/catal10080845)

M. L. Di Gioia, R. Cassano, P. Costanzo, N. H. Cano, L. Maiuolo, M. Nardi, F. P. Nicoletta, M. Oliverio, A. Procopio, Molecules 24 (2019) 2885 (https://doi.org/10.3390/molecules24162885)

N. P. Prajapati, R. H. Vekariya, M. A. Borad, H. D. Patel, RSC Adv. 4 (2014) 60176 (https://doi.org/10.1039/C4RA07437H)

J. J. Koenig, M. Breugst, in Catalysis by Molecular Iodine, H. Stefan, Ed., Wiley-VCH Publication, Weinheim, 2021, p. 233 https://doi.org/10.1002/9783527825738.ch7

S. Samanta, S. Mondal, Asian J. Org. Chem. 10 (2021) 2503 (https://doi.org/10.1002/ajoc.202100424)

L. C. R. M. da Frota, R. C. P. Canavez, S. L. da S. Gomes, P. R. R. Costa, A. J. M. da Silva, J. Braz. Chem. 20 (2009) 1916 (https://doi.org/10.1590/S0103-50532009001000021)

M. S. Refat, H. Al. Didamony, K. M. A. El-Nour, L. El-Zayat, J. Saudi Chem. Soc. 14 (2010) 323 (https://doi.org/10.1016/j.jscs.2010.04.004)

H. Naeimi, N. Alishahi, Org. Chem. Int. 2012 (2012) Article ID 498521 (https://doi.org/10.1155/2012/498521)

K. Gopalaiah, S. N. Chandrudu, RSC Adv. 5 (2015) 5015 (https://doi.org/10.1039/C4RA12490A)

S. V. Goswami, P. B. Thorat, V. N. Kadam, S. R. Bhusare, J. Chem. Biol. Phys. Sci. 1 (2011) 164 (https://www.researchgate.net/publication/269934184)

M. Malathi, P. S. Mohan, R. J. Butcher, C. K. Venil, Can. J. Chem. 87 (2009 1692 (https://doi.org/10.1139/V09-139)

C. Lia, H. Deng, T. Jin, Z. Liu, R. Jiang, C. Li, X. Jia, J. Li, Synthesis 49 (2017) 4350 (https://doi.org/10.1055/s-0036-1588487)

B. Maleki, H. Salehabadi, Eur. J. Chem. 1 (2010) 377 (https://doi.org/10.5155/eurjchem.1.4.377-380.165)

R. Bhata, S. Karhale, S. Ardeb, V. Helavia, Iranian J. Catal. 9 (2019) 173 (http://ijc.iaush.ac.ir/article_664816_76d3680235636f284a8f914d9421b93e.pdf)

M. Maphupha, W. P. Juma, C. B. de Koning, D. Brady, RSC Adv. 8 (2018) 39496 (https://doi.org/10.1039/C8RA07377E)

C. Praveen, A. Nandkumar, P. Dheenkuma, D. Muralidharan, P. T. Perumal, J. Chem. Sci. 124 (2012) 609 (https://doi.org/10.1007/s12039-012-0251-3)

Y. Han, X. Wang, X, Wang, L. Lv, G. Diao, Y. Yuan, Synthesis 44 (2012) 3027 (https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0032-1317035)

S. Ray, P. Das, B. Banerjee, A. Bhaumik, C. Mukhopadhyay, RSC Adv. 5 (2015) 72745 (http://dx.doi.org/10.1039/c5ra14894d)

W. Senapak, R. Saeeng, J. Jaratjaroonphong, U. Sirion, Mol. Catal. 458 (2018) 97 (https://doi.org/10.1016/j.mcat.2018.06.017).