DBUH+I3 complex an efficient catalyst for the synthesis of 2-phenyl benzimidazole and benzothiazole derivatives

Main Article Content

Pramod Kulkarni
https://orcid.org/0000-0001-5281-4602
Ramesh Gawade
https://orcid.org/0000-0002-3754-4488

Abstract

Herein, we have reported the facile synthesis of various benzimidazole / benzothiazole by using DBU-Iodine-Iodide as a green and simple catalyst. The R2NH+I3 complexes have been formed by reacting an aqueous mixture of ammonium iodide and molecular iodine with the aqueous solution of amine. The structure of R2NH+I3 complexes has confirmed by spectroscopic techniques. The prepared amine-iodine complexes have screened as a catalyst in the synthesis of benzimidazole / benzothiazoles. Among the screened catalyst DBUH+I3 complex has been found as an efficient catalyst. The synthesis of benzimidazoles and benzothiazoles has been achieved with the reaction of o-phenylene diamine /o- amino thiophenol and various substituted aryl aldehyde using DBUH+I3 as a catalyst. The present protocol has offered some advantages over other reported protocols such as the mild reaction condition, commercially available precursors, inexpensive catalyst, short reaction time, the broad scope of the substrate, high yield, simple isolation of the product, and environmentally benign method.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Kulkarni and R. Gawade, “DBUH+I3 complex an efficient catalyst for the synthesis of 2-phenyl benzimidazole and benzothiazole derivatives”, J. Serb. Chem. Soc., Feb. 2023.
Section
Organic Chemistry

References

J. Velk, V. Baliharov, J. Fink-Gremmels, S. Bull, J. Lamka, L. Sklov, Res. Vet. Sci. 76 (2004) 95 (https://doi.org/10.1016/j.rvsc.2003.08.005)

C. D. Hadole, J. D. Rajput, R. S. Bendre, Org. Chem. Curr. Res. 7 (2018) 195 (https://doi.org/10.4172/2161-0401.1000195)

P. C.Sharmal, A. Sinhmar, A. Sharma, H. Rajak , D.P. Pathak, J. Enzy. Inhib. Med. Chem. 28 (2013) 240 (https://doi.org/10.3109/14756366.2012.720572)

V. S. Padalkar, B. N. Borse, V. D. Gupta, K. R. Phatangare, V. S. Patil, P. G. Umape, N. Sekar, Arabian J. Chem. 9 (2016) 1125 (https://doi.org/10.1016/j.arabjc.2011.12.006)

M. A. Abdelgawad, R. B. Bakr, H. A. Omar, Bioorg. Chem. 74 (2017) 82 (https://doi.org/10.1016/j.bioorg.2017.07.007)

I. Roberta, C. Antonio, M. Silvia, C. Paola, S. Gabriele, P. Sandra, S. Simona, L. Roberta, S. Giuseppina, Viruses 13 (2021) 58 (https://doi.org/10.3390/v13010058)

S. Noel, S. Cadet, E. Gras, C. Hureau, Chem. Soc. Rev. 42 (2013) 7747 (https://doi.org/10.1039/C3CS60086F)

Y. Gao, W. Xu, H. Ma, A. Obolda, W. Yan, S. Dong, M. Zhang, F. Li, Chem. Mater. 29 (2017) 6733 (https://doi.org/10.1021/acs.chemmater.7b01521)

G. Singh, H. K. Sahota, Plant Physiology and Biochemistry 132 (2018) 166 (https://doi.org/10.1016/j.plaphy.2018.09.001)

M. Faheem, Anjali Rathaur, A. Pandey, V. K. Singh, A. K. Tiwari, Chem. Select. 2020, 5(13), 3981–3994. https://doi.org/10.1002/slct.201904832

X. Gao, J. Liu, X. Zuo, X. Feng, Y. Gao, Molecules 25 (2020) 1675 (https://doi.org/10.3390/molecules25071675)

Zhan- Zhan-Hui Zhang, Liang Yin, Yong-Mei Wang, Catalysis communications 8 (2007) 1126 (http://dx.doi.org/10.1016/j.catcom.2006.10.022)

Rui Wang, Xiao-xia Lu, Xiao-qi Yu, Lin Shi, Yong Sun, J. Mol. Catal. A: Chem. 266 (2007) 198 (https://doi.org/10.1016/j.molcata.2006.04.071)

S. Rostamizadeh, M. Nojavan, F. Heshmatpoor, Heterocycl. Commun. 13 (2007) 305 (https://doi.org/10.1515/HC.2007.13.5.305)

F. Abdellaoui, C. Youssef, H. Ben Ammar, T. Roisnel, J. F. Soule, H. Doucet, ACS Catal. 6 (2016) 4248 (https://doi.org/10.1021/acscatal.6b00678)

P.R. Fernandes, P. Patil R. Shete, J. Chem. Rev. 4 (2022) 25 (https://dx.doi.org/10.22034/jcr.2022.316076.1132)

M. Bharathi, S. Indira, G. Vinoth, T. Mahalakshmi, E. Induja, K. Shamuga Bharathi, Journal of coordination chemistry 73 (2020) 1 (http://dx.doi.org/10.1080/00958972.2020.1730335)

S. Majumdar, M. Chakraborty, N. Pramanikb, D. K. Maiti, RSC Adv. 5 (2015) 51012 (https://doi.org/10.1039/C5RA08183A)

T. T. Nguyen, X.-T. T. Nguyen, T.-L. H. Nguyen, P. H. Tran, ACS Omega 4 (2019) 368 (https://doi.org/10.1021/acsomega.8b02932)

M. A. Tzani, C. Gabriel, I. N. Lykakis, Nanomaterials 10 (2020) 2405 (https://doi.org/10.3390/nano10122405)

K. B. Rasal, Ganapati D. Yadav, Catalysis Today (2017) 309 (http://dx.doi.org/10.1016/j.cattod.2017.10.014)

S. Singhal, P.j Khanna, S. S. Panda, and L. Khanna, Journal of Heterocyclic Chemistry 56 (2016) 2702 (https://doi.org/10.1002/jhet.3649)

J. Kovvuri, B. Nagaraju, A. Kamal, A. K. Srivastava, ACS Comb. Sci. 18 (2016) 644 (https://doi.org/10.1021/acscombsci.6b00107)

N. H. Cano, J. G. Uranga, M. Nardi, A. Procopio, D. A. Wunderlin, and A. N. Santiago, Beilstein J. Org. Chem. 12 (2016) 2410 (https://doi.org/10.3762/bjoc.12.235)

S. Bonacci, G. Iriti, S. Mancuso, P. Novelli, R. Paonessa, S. Tallarico, and M. Nardi Catalysts 10 (2020) 845 (https://doi.org/10.3390/catal10080845)

M. L. Di Gioia, R. Cassano, P. Costanzo, N. H. Cano, L. Maiuolo, M. Nardi, F. P. Nicoletta, M. Oliverio, and A. Procopio Molecules 24 (2019) 2885 (https://doi.org/10.3390/molecules24162885)

N. P. Prajapati, R. H. Vekariya, M. A. Borad, H. D. Patel, RSC Adv. 4 (2014) 60176 (https://doi.org/10.1039/C4RA07437H)

J. J. Koenig, M. Breugst ‘Catalysis by Molecular Iodine’ Chapter 7 ‘Halogen Bonding in Solution’ Edited by H. Stefan Page No. 233, 2021, Ed. Wiley-VCH Publication. https://doi.org/10.1002/9783527825738.ch7

S. Samanta, S. Mondal, Asian J. Org. Chem. 10 (2021) 2503 (https://doi.org/10.1002/ajoc.202100424)

L. C. R. M. da Frota, R. C. P. Canavez, S. L. da S. Gomes, P. R. R. Costa, A. J. M. da Silva, J. Braz. Chem. 20 (2009) 1916 (https://doi.org/10.1590/S0103-50532009001000021)

M. S. Refat, H. Al. Didamony, K. M. A. El-Nour, L. El-Zayat, J. Saudi Chem. Soc. 14 (2010) 323 (https://doi.org/10.1016/j.jscs.2010.04.004)

H. Naeimi, N. Alishahi, Org. Chem. International 2012 (2012) Article ID 498521 (https://doi.org/10.1155/2012/498521)

K. Gopalaiah and S. N. Chandrudu, RSC Adv. 5 (2015) 5015 (https://doi.org/10.1039/C4RA12490A)

S. V. Goswami, P. B. Thorat, V. N. Kadam, S. R. Bhusare, J. Chem. Bio. Phy. Sci. 1 (2011) 164 (https://www.researchgate.net/publication/269934184)

M. Malathi, P. S. Mohan, R. J. Butcher, C. K. Venil, Can. J. Chem. 87 (2009 1692 (https://doi.org/10.1139/V09-139)

C. Lia, H. Deng, T. Jin, Z. Liu, R. Jiang, C. Li, X. Jia, J. Li, Synthesis, 49 (2017) 4350 (https://doi.org/10.1055/s-0036-1588487)

B. Maleki, H. Salehabadi, Eur. J. Chem. 1 (2010) 377 (https://doi.org/10.5155/eurjchem.1.4.377-380.165)

R. Bhata, S. Karhale, S. Ardeb, V. Helavia, Iranian J. Catalysis 9 (2019) 173 (http://ijc.iaush.ac.ir/article_664816_76d3680235636f284a8f914d9421b93e.pdf)

M. Maphupha, W. P. Juma, C. B. de Koning, D. Brady, RSC Adv. 8 (2018) 39496 (https://doi.org/10.1039/C8RA07377E)

C. Praveen, A. Nandkumar, P. Dheenkuma, D. Muralidharan, P. T. Perumal, J. Chem. Sci. 124 (2012) 609 (https://doi.org/10.1007/s12039-012-0251-3)

Y. Han, X. Wang, X, Wang, L. Lv, G. Diao, Y. Yuan, Synthesis 44 (2012) 3027 (https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0032-1317035)

S. Ray, P. Das, B. Banerjee, A. Bhaumik, C. Mukhopadhyay, RSC Adv. 5 (2015) 72745 (http://dx.doi.org/10.1039/c5ra14894d)

W. Senapak, R. Saeeng, J. Jaratjaroonphong, U. Sirion, Mol. Catal. 458 (2018) 97 (https://doi.org/10.1016/j.mcat.2018.06.017)