Full factorial design methodology approach to optimize the elimination of gallic acid from water by coagulation using activated acorns barks as coagulant-aid Scientific paper

Main Article Content

Nadjiba Boulahia
https://orcid.org/0000-0002-8187-8565
Dalila Hank
https://orcid.org/0000-0002-4944-0950
Samir Meridja
https://orcid.org/0000-0001-7262-219X
Abdelmalek Chergui
https://orcid.org/0000-0002-5738-0935

Abstract

This study investigated the elimination of organic matter from water by the coagulation process using a biomaterial “acorns barks” as a coagulant-aid with the presence of aluminium sulphate in low concen­tration. The removal of gallic acid from water was first studied by two pro­cesses: the adsorption on activated acorns barks, and coagulation by aluminium sulphate, separately. The hybrid system was then studied, and the optimal oper­ating conditions were det­ermined. The performance of the hybrid system (coagul­ation/adsorption) mainly depends on the initial concentration of gallic acid, the coagulant dose and the mass of coagulant-aid. A full factorial design 23 was used to determine the optimum conditions for gallic acid removal. The maximum removal of gal­lic acid in water was 92.48 %, achieved at 20 mg L-1 of initial gallic acid con­cen­tration, 50 mg L-1 of aluminium sulphate coagulant concentration and 1.5 g of activated acorns barks adsorbent mass. The applic­ation of these optimal con­ditions on urban wastewater for the elimination of organic matter has shown the performance of this hybrid system treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Boulahia, D. Hank, S. Meridja, and A. Chergui, “Full factorial design methodology approach to optimize the elimination of gallic acid from water by coagulation using activated acorns barks as coagulant-aid: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 4, pp. 437–450, Jan. 2023.
Section
Environmental Chemistry

References

B. Khalfaoui, A. H. Meniai, R. Borja, J. Chem. Technol. Biotechnol. 64 (1995) 153 (https://doi.org/10.1002/jctb.280640207)

P. Schröder, B. Helmreich, B. Škrbić, M. Carballa, M. Papa, C. Pastore, Z. Emre, A. Oehmen, A. Langenhoff, M. Molinos, Environ. Sci. Pollut. Res. 23 (2016) 12835 (https://doi.10.1007/s11356-016-6503-x).

R. Pedrazzani, G. Bertanza, I. Brnardić, Z. Cetecioglu, J. Dries, J. Dvarionienė, A.J. García-Fernández, A. Langenhoff, G. Libralato, G. Lofrano, Sci. Total Environ. 651 (2019) 3202 (https://doi.org/10.1016/j.scitotenv.2018.10.027)

A. Ali, K. Saeed, Desalin. Water Treat. 57 (2016) 11242 (https://doi.org/10.1080/19443994.2015.1041057)

A. T. M. Din, B. Hameed, A. L. Ahmad, J. Hazard. Mater. 161 (2009) 1522 (https://doi.org/10.1016/j.jhazmat.2008.05.009)

A. E. Vilian, J. Y. Song, Y. S. Lee, S.-K. Hwang, H. J. Kim, Y.-S. Jun, Y. S. Huh, Y.-K. Han, Biosens. Bioelectron. 117 (2018) 597 (https://doi.org/10.1016/j.bios.2018.06.064)

J. Wang, A. Li, L. Xu, Y. Zhou, J. Hazard. Mater. 169 (2009) 794 (https://doi.org/10.1016/j.jhazmat.2009.04.013)

A. Gil, N. Taoufik, A. García, S. Korili, Environ. Technol. (2018) 3017 (https://doi.org/10.1080/09593330.2018.1464066)

Q. Zhou, L. Ding, Y. Zhu, M. Zhong, C. Yang, Processes 8 (2020) 273 (https://doi.org/10.3390/pr8030273)

X. Song, C. Li, Z. Chai, Y. Zhu, Y. Yang, M. Chen, R. Ma, X. Liang, J. Wu, Sci. Total Environ. 765 (2021) 142711 (https://doi.org/10.1016/j.scitotenv.2020.142711)

Z. Zhang, Q. Pang, M. Li, H. Zheng, H. Chen, K. Chen, Environ. Sci. Pollut. Res. 22 (2015) 1085 (https://doi.org/10.1007/s11356-014-3409-3)

I. Ghodbane, L. Nouri, O. Hamdaoui, M. Chiha, J. Hazard. Mater. 152 (2008) 148 (https://doi.org/10.1016/j.jhazmat.2007.06.079)

C. Brasquet, J. Roussy, E. Subrenat, P. L. Cloirec, Environ. Technol. 17 (1996) 1245 (https://doi.org/10.1080/09593331708616494)

Z. Aksu, J. Yener, Waste Manage. 21 (2001) 695 (https://doi.org/10.1016/S0956-053X(01)00006-X)

V. Srihari, A. Das, Ecotoxicol. Environ. Saf. 71 (2008) 274 (https://doi.org/10.1016/j.ecoenv.2007.08.008)

N. K. Amin, J. Hazard. Mater. 165 (2009) 52 (https://doi.org/10.1016/j.jhazmat.2008.09.067)

M. Šćiban, M. Klašnja, M. Antov, B. Škrbić, Bioresour. Technol. 100 (2009) 6639 (https://doi:10.1016/j.biortech.2009.06.047)

T. Zhang, W. P. Walawender, L. Fan, M. Fan, D. Daugaard, R. Brown, Chem. Eng. J. 105 (2004) 53 (https://doi.org/10.1016/j.cej.2004.06.011)

B. Škrbić, V. Marinković, S. Spaić, V. Milanko, S. Branovački, Microchem. J. 139 (2018) 9 (https://doi.org/10.1016/j.microc.2018.02.007)

A. K. Verma, R. R. Dash, P. Bhunia, J. Environ. Manage. 93 (2012) 154 (https://doi.org/10.1016/j.jenvman.2011.09.012)

C.-Y. Yin, Process Biochem. 45 (2010) 1437 (https://doi.org/10.1016/j.procbio.2010.05.030)

J. Li, S. Jiao, L. Zhong, J. Pan, Q. Ma, Colloids Surfaces., A 428 (2013) 100 (https://doi.org/10.1016/j.colsurfa.2013.03.034)

S. D. Kim, J. Cho, I. S. Kim, B .J. Vanderford, S. A. Snyder, Water Res. 41 (2007) 1013 (https://doi.org/10.1016/j.watres.2006.06.034)

H. Harfouchi, D. Hank, A. Hellal, Process Saf. Environ. Prot. 99 (2016) 216 (https://doi.org/10.1016/j.psep.2015.10.019)

G. Annadurai, R.-S. Juang, D.-J. Lee, Adv Environ Res. 6 (2002) 191 (https://doi.org/10.1016/S1093-0191(01)00050-8)

S.A. Kordkandi, M. Forouzesh, J. Taiwan Inst. Chem. Eng. 45 (2014) 2597 (https://doi.org/10.1016/j.jtice.2014.06.015)

C. S. Araújo, I. L. Almeida, H. C. Rezende, S. M. Marcionilio, J. J. Léon, T. N. de Matos, Microchem. J. 137 (2018) 348 (https://doi.org/10.1016/j.microc.2017.11.009)

M. Franceschi, A. Girou, A. Carro-Diaz, M. Maurette, E. Puech-Costes, Water Res. 36 (2002) 3561 (https://doi.org/10.1016/S0043-1354(02)00066-0)

M. Martín, I. González, M. Berrios, J. Siles, A. Martin, Chem. Eng. J. 172 (2011) 771 (https://doi.org/10.1016/j.cej.2011.06.060)

J. Dotto, M. R. Fagundes-Klen, M. T. Veit, S. M. Palacio, R. Bergamasco, J. Clean. Prod. 208 (2019) 656 (https://doi.org/10.1016/j.jclepro.2018.10.112)

S. Bouchareb, D. Hank, M.A. Salam, K. Ouddai, A. Hellal, Desalin. Water Treat. 137 (2019) 143 (https:// doi.org/10.5004/dwt.2019.23185)

C.d.C.A. Lopes, P.H.J.O. Limirio, V.R. Novais, P. Dechichi, Appl. Spectrosc. Rev. 53 (2018) 747 (https://doi.org/10.1080/05704928.2018.1431923)

D. Zhou, L. Zhang, S. Guo, Water Res. 39 (2005) 3755 (https://doi.org/10.1016/j.watres.2005.06.033)

N. M. Mahmoodi, B. Hayati, M. Arami, C. Lan, Desalination 268 (2011) 117 (https://doi.org/10.1016/j.desal.2010.10.007)

P.D. Pathak, S.A. Mandavgane, J. Environ. Chem. Eng. 3 (2015) 2435 (https://doi.org/10.1016/j.jece.2015.08.023)

A. Ofomaja, E. Naidoo, J. Chem. Eng. 175 (2011) 260 (https://doi.org/10.1016/j.cej.2011.09.103)

N. N. Rudi, M. S. Muhamad, L. Te Chuan, J. Alipal, S. Omar, N. Hamidon, N. H. A. Hamid, N.M. Sunar, R. Ali, H. Harun, Heliyon 6 (2020) 5049 (https://doi.org/10.1016/j.heliyon.2020.e05049)

T.K. Hussein, N.A. Jasim, Mater. Today Proc. (2021) 1946 (https://doi.org/10.1016/j.matpr.2020.12.240)

Y. Zhao, Y. Wang, B. Gao, H. Shon, J.-H. Kim, Q. Yue, Desalination 299 (2012) 79 (https://doi.org/10.1016/j.desal.2012.05.026).

S. Zhao, B. Gao, Y. Wang, Z. Yang, Colloids Surfaces., A 417 (2013) 161 (https://doi.org/10.1016/j.colsurfa.2012.10.062)

M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Appl. Surf. Sci. 258 (2012) 4402 (https://doi.org/10.1016/j.apsusc.2011.12.125)

F. Julien, B. Gueroux, M. Mazet, Water Res. 28 (1994) 2567 (https://doi.org/10.1016/0043-1354(94)90075-2).