Performance of carbon-coated magnetic nanocomposite in methylene blue and arsenate treatment from aqueous solution Scientific paper

Main Article Content

Bích Nguyễn
https://orcid.org/0000-0003-4724-7476
Thi Que Phuong Phan
https://orcid.org/0000-0002-2929-5143
Cao Thanh Tung Pham
https://orcid.org/0000-0002-4631-481X
Huu Nghi Nguyen
https://orcid.org/0000-0002-6946-2903
Sy Nguyen Pham
https://orcid.org/0000-0001-9105-4036
Quoc Khuong Anh Nguyen
https://orcid.org/0000-0002-9319-9746
Dinh Thanh Nguyen
https://orcid.org/0000-0002-5577-7330

Abstract

Herein, carbon-coated magnetic nanocomposite fabricated by a low-temperature hydrothermal method was used for methylene blue and arsenate treatment in aqueous solution. The Langmuir model fits the experimental data with a calculated maximum adsorption capacity of 110.63 and 2.31 mg g-1 for methylene blue and arsenate adsorption, respectively. Furthermore, the adsorp­tion mechanisms of methylene blue as well as arsenate are physical adsorption and a combination of physical adsorption and chemisorption, respectively. Gibbs energy change with negative values indicates that methylene blue and arsenate adsorption on magnetic materials occurs naturally. This research demonstrated a simple, efficient, and reliable method for removing methylene blue and arsenate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Nguyễn, “Performance of carbon-coated magnetic nanocomposite in methylene blue and arsenate treatment from aqueous solution: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 4, pp. 423–435, Mar. 2023.
Section
Materials

References

S. Ji, C. Miao, H. Liu, L. Feng, X. Yang, H. Guo, Nanoscale Res. Lett. 13 (2018) 178 (https://doi.org/10.1186/s11671-018-2580-8)

W. J. Liu, K. Tian, H. Jiang, H. Q. Yu, Sci Rep 3 (2013) 2419 (https://doi.org/10.1080/19443994.2015.1132476)

T. H. Nguyen, T. H. Pham, H. T. N. Thi, T. N. Nguyen, M. V. Nguyen, T. T. Dinh, M. P. Nguyen, T. Q. Do, T. Phuong, T. T. Hoang, T. T. M. Hung, V. H. T. Thi, J. Chem. 2019 (2019) 1 (https://doi.org/10.1155/2019/5295610)

M. Inyang, B. Gao, P. Pullammanappallil, W. Ding, A. R. Zimmerman, Bioresour. Technol. 101 (2010) 8868 (https://doi.org/10.1016/j.biortech.2010.06.088)

N. Besharati, N. Alizadeh, S. Shariati, J. Mex. Chem. Soc. 62 (2018) 110 (https://doi.org/10.29356/jmcs.v62i3.433)

W. Chen, R. Parette, J. Zou, F. Cannon, B. Dempsey, Water Res. 41 (2007) 1851 (https://doi.org/10.1016/j.watres.2007.01.052)

M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, M. Inyang, Bioresour. Technol. 130 (2013) 457 (https://doi.org/10.1016/j.biortech.2012.11.132)

L. Huang, J. Cai, M. He, B. Chen, B. Hu, Ind. Eng. Chem. Res. 57 (2018) 6201 (https://doi.org/10.1021/acs.iecr.7b05294)

N. S. Pham, P. T. Q. Phan, B. N. Nguyen, V. X. Le, J. Appl. Electrochem. (2022) (https://doi.org/10.1007/s10800-022-01747-1)

N. S. Pham, V. X. Le, J. Electroanal. Chem. 921 (2022) 116507 (https://doi.org/10.1016/j.jelechem.2022.116507)

N. S. Pham, B. N. Nguyen, A. Q. K. Nguyen, J. Appl. Electrochem. (2022) (https://doi.org/10.1007/s10800-022-01784-w)

K. Dai, F. Wang, W. Jiang, Y. Chen, J. Mao, J. Bao, Nanoscale Res. Lett. 12 (2017) 528 (https://doi.org/10.1186/s11671-017-2295-2)

N. S. Pham, Y. H. Seo, E. Park, T. D. D. Nguyen, I.-S. Shin, Data Br. 31 (2020) 105891 (https://doi.org/10.1016/j.dib.2020.105891)

N. S. Pham, Y. H. Seo, E. Park, T. D. D. Nguyen, I.-S. Shin, Electrochim. Acta 353 (2020) 136446 (https://doi.org/10.1016/j.electacta.2020.136446)

V. X. Le, H. Lee, N. S. Pham, S. Bong, H. Oh, S.-H. Cho, I.-S. Shin, Sensors Actuators, B 346 (2021) 130552 (https://doi.org/10.1016/j.snb.2021.130552)

N. S. Pham, P. T. Q. Phan, V. X. Le, J. Appl. Electrochem. 52 (2022) 1343 (https://doi.org/10.1007/s10800-022-01716-8)

L. Zhu, F. Shen, R. L. Smith, L. Yan, L. Li, X. Qi, Chem. Eng. J. 316 (2017) 770 (https://doi.org/10.1016/j.cej.2017.02.034)

L. Ai, C. Zhang, Z. Chen, J. Hazard Mater. 192 (2011) 1515 (https://doi.org/10.1016/j.jhazmat.2011.10.041)

X. Bao, Z. Qiang, J.-H. Chang, W. Ben, J. Qu, J. Environ. Sci. 26 (2014) 962 (https://doi.org/10.1016/S1001-0742(13)60485-4)

L. Verma, M. A. Siddique, J. Singh, R. N. Bharagava, J. Environ. Manage. 250 (2019) 109452 (https://doi.org/10.1016/j.jenvman.2019.109452)

J. Wang, J. Xu, N. Wu, J. Exp. Nanosci. 12 (2017) 297 (https://doi.org/10.1080/17458080.2017.1325016)

B. Qiu, H. Gu, X. Yan, J. Guo, Y. Wang, D. Sun, Q. Wang, M. Khan, X. Zhang, B. L. Weeks, D. P. Young, Z. Guo, S. Wei, J. Mater. Chem. A 2 (2014) 17454 (https://doi.org/10.1039/C4TA04040F)

H. Zeng, W. Qi, L. Zhai, F. Wang, J. Zhang, D. Li, J. Environ. Chem. Eng. 9 (2021) 105951 (https://doi.org/10.1016/j.jece.2021.105951)

Y. Bulut, H. Aydın, Desalination 194 (2006) 259 (https://doi.org/10.1016/j.desal.2005.10.032)

K. Y. Foo, B. H. Hameed, Desalin. Water Treat. 19 (2012) 255 (https://doi.org/10.5004/dwt.2010.1214)

A. Sharma, N. Verma, A. Sharma, D. Deva, N. Sankararamakrishnan, Chem. Eng. Sci. 65 (2010) 3591 (https://doi.org/10.1016/j.ces.2010.02.052)

X. Shi, C. Wang, Y. Ma, H. Liu, S. Wu, Q. Shao, Z. He, L. Guo, T. Ding, Z. Guo, Powder Technol. 356 (2019) 726 (https://doi.org/10.1016/j.powtec.2019.09.002)

B. Gu, J. Schmitt, Z. Chen, L. Llang, J. F. McCarthy, Environ. Sci. Technol 28 (1994) 38 (https://doi.org/10.1021/es00050a007)

L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, Y. Liu, Colloids Surfaces, A 446 (2014) 1 (https://doi.org/10.1016/j.colsurfa.2014.01.030)

C. Li, Z. Xiong, J. Zhang, C. Wu, J. Chem. Eng. Data 60 (2015) 3414 (https://doi.org/10.1021/acs.jced.5b00692)

T. S. Anirudhan, J. Nima, S. Sandeep, V. R. N. Ratheesh, Chem. Eng. J. 209 (2012) 362 (https://doi.org/10.1016/j.cej.2012.07.129)

M. A. Ahmad, N. A. Ahmad Puad, O. S. Bello, Water Resour. Ind. 6 (2014) 18 (https://doi.org/10.1016/j.wri.2014.06.002)

X. Zhou, J. Zhou, Y. Liu, J. Guo, J. Ren, F. Zhou, Fuel 233 (2018) 469 (https://doi.org/10.1016/j.fuel.2018.06.075).