Antidiabetic potential of simple carbamate derivatives: Comparative experimental and computational study Scientific paper

Main Article Content

Relja Suručić
https://orcid.org/0000-0003-1599-6210
Ivana Jevtić
https://orcid.org/0000-0002-7653-2420
Tatjana Stanojković
Jelena Popović-Djordjević
https://orcid.org/0000-0003-4057-3826

Abstract

With the increasing global burden of diabetes mellitus type 2, the search for the new drugs, with better pharmacological profile is continued. As a part of this surge, the synthesis, pharmacological in vitro and computational evaluation of five, simple carbamate derivatives, against carbohydrate digestive enzyme α-glucosidase, is disclosed herein. Results of the experimental and computational assessment indicated that examined carbamates deterred the act­ivity of α-glucosidase with acceptable IC50 values ranging from 65.34 to 79.89 µM compared to a standard drug acarbose (109.71 µM). Similarly, the studied compounds displayed in silico binding affinity for α-glucosidase enzyme with significant binding energies. Preliminary toxicity profiles of studied carbamates against three cancerous cell lines indicated their poor activity, suggesting that significant structural modifications have to be made to improve their anticancer efficiency. Results of the present study indicate that the examined carbamates were able to virtually or experimentally interact with an important target of dia­betes mellitus type 2. Additionally, a new pharmacophore model is proposed featuring hydrogen bond donating carbamate –NH group, hydrogen bond accept­ing carbamate –OCH3 group and hydrophobic stabilization of aromatic moieties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. . Suručić, I. . Jevtić, . T. Stanojković, and J. Popović-Djordjević, “Antidiabetic potential of simple carbamate derivatives: Comparative experimental and computational study: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 11, pp. 1089–1102, Nov. 2023.
Section
Organic Chemistry

Funding data

References

X. Lin, Y. Xu, X. Pan, J. Xu, Y. Ding, X. Sun, X. Song, Y. Ren, P.-F. Shan, Sci. Rep. 10 (2020) 14790 (https://doi.org/10.1038/s41598-020-71908-9)

H. Rasouli, R. Yarani, F. Pociot, J. P. Popović-Djordjević, Pharmacol. Res. 155 (2020) 104723 (https://doi.org/10.1016/j.phrs.2020.104723)

J. Størling, F. Pociot, Genes 8 (2017) 72 (https://doi.org/10.3390/genes8020072)

R. V. Cohen, J. C. Pinheiro, C. A. Achiavon. J. E. Salles, B. L. Wajchenberg, D. E. Cummings, Diabetes Care 35 (2012) 1420 (https://doi.org/10.2337/dc11-2289)

N. S. Artzi, S. Shilo, E. Hadar, H. Rossman, S. Barbash-Hazan, A. Ben-Haroush, R. D. Balicer, B. Feldman, A. Wiznitzer, E. Segal, Nat. Med. 26 (2020) 71 (https://doi.org/10.1038/s41591-019-0724-8)

J. B. Popovic-Djordjevic, I. I. Jevtić, T. P. Stanojkovic, Curr. Med. Chem. 25 (2018) 2140 (https://doi.org/10.2174/0929867325666171205145309)

H. Rasouli, R. Khodarahmi, S. Mohammad, B. Hosseini Ghazvini, H. Adibi, Food Funct. 8 (2017) 1942 (https://doi.org/10.1039/C7FO00220C)

J. B. Popović-Djordjević, I. I. Jevtić, N. Dj. Grozdanić, S. B. Šegan, M. V. Zlatović, M. D. Ivanović, T. P. Stanojković, J. Enz. Inhib. Med. Chem. 32 (2017) 298 (https://doi.org/10.1080/14756366.2016.1250754)

J. N. Gorantla, S. Maniganda, S. Pengthaisong, L. Ngiwsara, P. Sawangareetrakul, S. Chokchaisiri, P. Kittakoop, J. Svasti, J. R. Ketudat Cairns, ACS Omega 6 (2021) 25710 (https://doi.org/10.1021/acsomega.1c03928)

N. Kausar, S. Ullah, M. Aqeel Khan, H. Zafar, A.-t.-Wahab, M. I. Choudhary, S. Yousuf, Bioorg. Chem. 106 (2021) 104499 (https://doi.org/10.1016/j.bioorg.2020.104499)

A. K. Ghosh, M. Brindisi, J. Med. Chem. 58 (2015) 2895 (https://doi.org/10.1021/jm501371s)

M. Chandrasekhar, G. S. Prasad, C. Venkataramaiah, C. Naga Raju, K. Seshaiah, W. Rajendra, Mol. Divers. 23 (2019) 723 (https://doi.org/10.1007/s11030-018-9906-4)

J. Ma, N. Lu, W. Quin, R. Xu, Y. Wang, X. Chen, Ecotoxicol. Environ. Saf. 63 (2006) 268 (https://doi.org/10.1016/j.ecoenv.2004.12.002)

M. D. Stephens, N. Yodsanit, C. Melander, Org. Biomol. Chem. 14 (2016) 6853 (https://doi.org/10.1039/C6OB00706F)

S. Clarke, F. Mulcahy, HIV Medicine 1 (2000) 15 (https://doi.org/10.1046/j.1468-1293.2000.00004.x)

C. Fortin, V. Joly, Expert Rev. Anti Infec. Ther. 2 (2004) 671 (https://doi.org/10.1586/14789072.2.5.671)

N. Y. Rakhmanina, J. N. Van den Anker, Expert Opin. Drug Metab. Toxicol. 6 (2010) 95 (https://doi.org/10.1517/17425250903483207)

N. Pathak, K. Fatima, S. Singh, D. Mishra, A. C. Gupta, Y. Kumar, D. Chanda, D. U. Bawankule, K. Shanker, F. Khan, A. Gupta, S. Luqman, A. S. Negi, J. Steroid Bioch. Mol. Biol. 194 (2019) 105457 (https://doi.org/10.1016/j.jsbmb.2019.105457)

U. Košak, N. Strašek, D. Knez, M. Jukič, S. Žakelj, A. Zahirović, A. Pišlar, X. Brazzlotto, F. Nachon, J. Kos, S. Gobec, Eur. J. Med. Chem. 197(2020) 112282 (https://doi.org/10.1016/j.ejmech.2020.112282)

M. Saeedi, M. Raeeisi-Nafchi, S. Sobhani, S. S. Mirfazli, M. Zardkanlou, S. Mojtabavi, M. A. Faramarzi, T. Akbarzadeh, Mol. Divers. 25 (2021) 2399 (https://doi.org/10.1007/s11030-020-10137-8)

J. D. Durrant, J. A. McCammon, BMC Biol. 9 (2011) 1 (https://doi.org/10.1186/1741-7007-9-71)

J. E. Kerrigan, in In Silico Models for Drug Discovery. Methods in Molecular Biology (Methods and Protocols), S. Kortagere, Ed., Humana Press, Totowa, NJ, 2013, p. 95 (https://doi.org/10.1007/978-1-62703-342-8_7)

I. I. Jevtić, Lj. Došen-Mićović, E. R. Ivanović, M. D. Ivanović, Synthesis 48 (2016) 1550 (https://doi.org/10.1055/s-0036-1588985)

P. Mccue, Y. I. Kwon, K. Shetty, J. Food Biochem. 29 (2005) 278 (https://doi.org/10.1111/j.1745-4514.2005.00020.x)

V. Marković, N. Debeljak, T. Stanojković, B. Kolundžija, D. Sladić, M. Vujčić, B. Janović, N. Tanić, M. Perović, V. Tešić, J. Antić, M. D. Joksović. Eur. J. Med. Chem. 89 (2015) 401 (https://doi.org/10.1016/j.ejmech.2014.10.055)

V. Roig-Zamboni, B. Cobucci-Ponzano, R. Iacono, M. Carmina Ferrara, S. Germany, Y. Bourne, G. Parenti, M. Moracci, G. Sulzenbacher, Nat. Commun. 8 (2017) 1 (https://dx.doi.org/10.1038%2Fs41467-017-01263-3)

H. R. Mohammadi-Motlagh, Y. Shokohina, M. Majarrab, H. Rasouli, A. Mostafaie, Biomed. Pharmacother. 93 (2017) 117 (https://doi.org/10.1016/j.biopha.2017.06.013)

H. Rasouli, M. Mehrabi, S. S. Arab, R. Khodarahmi, J. Iran. Chem. Soc. 14 (2017) 2023 (https://doi.org/10.1007/s13738-017-1140-y)

I. I. Jevtić, K. Savić Vujović, D. Srebro, S. Vučković, M. D. Ivanović, S. V. Kostić-Ra-jačić, Pharmacol. Rep. 72 (2020) 1069 (https://doi.org/10.1007/s43440-020-00121-2)

V. Janganati, N. Reddy Penthala, N. Reddy Madadi, Z. Chen, P.A. Crooks, Bioorg. Med. Chem. Lett. 24 (2014) 3499 (https://doi.org/10.1016/j.bmcl.2014.05.059)

I. Kufareva, R. Abagyan, Methods of Protein Structure Comparison in Homology Modeling. Methods in Molecular Biology (Methods and Protocols), A. Orry, R. Abagyan, Eds., Humana Press, Totowa, NJ, 2011, p. 231 (https://doi.org/10.1007/978-1-61779-588-6_10)

Y. Xie, J. An, G. Yang, G. Wu, Y. Zhang, L. Cui, Y. Feng, J. Biol. Chem. 289 (2014) 7994 (https://doi.org/10.1074/jbc.M113.536045).

Most read articles by the same author(s)