Immobilization of natural betalain pigments in inorganic hosts Scientific paper

Main Article Content

Ligia Todan
https://orcid.org/0000-0003-1701-1139
Daniela C. Culita
https://orcid.org/0000-0001-9289-5443
Mirabela E. Soare
https://orcid.org/0000-0002-8188-2759
Rodica M. Ion
https://orcid.org/0000-0002-9842-3321
Radu C. Fierascu
Maria Maganu
https://orcid.org/0000-0002-9044-358X

Abstract

In search of new food-grade pH sensitive formulations, red beet ext­ract rich in betacyanin was included in different inorganic matrices based on silica and aluminosilicate to improve the stability of the dye. By the direct method of encapsulation of the pigments in silica support, stabilizing agents such as inclusion complex forming β-cyclodextrin and ascorbic acid were added. The post loading system assumes the synthesis of porous silica and alu­minosilicate powders and the adsorption of the beet extract by these supports. The unloaded carriers were structurally and texturally characterized (X-ray dif­fraction, FTIR, N2-physisorption). The presence of betanin, approved as a red food colorant, was evidenced by UV–Vis spectroscopy in all the hosts. Color properties were investigated as well as the pH generated color variations of the powders exposed to ammonia in the head-space of a sealed vessel. The obtained results could widen the field of applications of beet extract, the pre­pared eco­logical formulations could provide added value to edible products packaging.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Todan, D. C. . Culita, M. E. Soare, R. M. Ion, R. C. Fierascu, and M. Maganu, “Immobilization of natural betalain pigments in inorganic hosts: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 29–38, Feb. 2024.
Section
Inorganic Chemistry
Author Biography

Ligia Todan, Ilie Murgulescu Institute of Physical Chemistry, Romanian Academ

Material Science and advanced characterization methods

References

S. Chethana, C. A. Nayak, K. S. M. S. Raghavarao, J. Food Eng. 81 (2007) 679 (https://doi.org/10.1016/j.jfoodeng.2006.12.021)

S. Akan, Ö. Horzum, H. C. Akal, LWT – Food Sci. Technol. 155 (2022) 112877 (https://doi.org/10.1016/j.lwt.2021.112877)

P. S. Grewal, C. Modavi, Z. N. Russ, N. C. Harris, J. E. Dueber, Metab. Eng. 45 (2018) 180 (https://doi.org/10.1016/j.ymben.2017.12.008)

O. L. Torres Vargas, Y. V. Galeano Loaiza, M. L. González, J. Mater. Res. Technol. 13 (2021) 2239 (https://doi.org/10.1016/j.jmrt.2021.05.091)

M. I. Khan, Food Chem. 197 (2016) 1280 (https://doi.org/10.1016/j.foodchem.2015.11.043)

S. J. Calva-Estrada, M. Jiménez-Fernández, E. Lugo-Cervantes, Food Chem.: Mol. Sci. 4 (2022) 100089 (https://doi.org/10.1016/j.fochms.2022.100089)

S. Li, B. Mu, X. Wang, A. Wang, Dyes Pigments 190 (2021) 109322 (https://doi.org/10.1016/j.dyepig.2021.109322)

E. Pérez-Ramírez, E. Lima, A. Guzmán, Dyes Pigments 120 (2015) 161 (https://doi.org/10.1016/j.dyepig.2015.03.040)

E. S. Dolinina, E. Yu. Akimsheva, E. V. Parfenyuk, J. Mol. Liq. 287 (2019) 110938 (https://doi.org/10.1016/j.molliq.2019.110938)

E. Akbar Hussain, Z. Sadiq, M. Zia-Ul-Haq, Betalains: Biomolecular Aspects, Springer International Publishing, Cham, 2018, p. 125 (https://doi.org/10.1007/978-3-319-95624-4)

F. Billmeyer, M. Saltzman, Principles of color technology, John Wiley & Sons, New York, 2000, p. 1

W. Simanjuntak, S. Sembiring, P. Manurung, R. Situmeang, I. M. Low, Ceram. Int. 39 (2013) 9369 (https://doi.org/10.1016/j.ceramint.2013.04.112)

D. Paudel, R. Atta-Fynn, D. A. Drabold, S. R. Elliott, P. Biswas, Phys. Rev., B 97 (2018) 184202. (https://doi.org/10.1103/physrevb.97.184202)

D. Orthaber, A. Bergmann, O. Glatter, J. Appl. Crystallogr. 33 (2000) 218 (https://doi.org/10.1107/S0021889899015216)

C. Boissière, L. Nicole, C. Gervais, F. Babonneau, M. Antonietti, H. Amenitsch, C. Sanchez, D. Grosso, Chem. Mater. 18 (2006) 5238 (https://doi.org/10.1021/cm061489j)

M. Król, A. Koleżyński, W. Mozgawa, Molecules 26 (2021) 342 (https://doi.org/10.3390/molecules26020342)

Molecular Sieve Zeolites-I, E. M. Flanigen, L. B. Sand, Еds., American Chemical Society, Washington, D.C., 1974, p. 201 (https://doi/10.1021/ba-1971-0101.ch016)

J. Yang, Y.-X. Huang, Y. Pan, J.-X. Mi, Micropor. Mesopor. Mater. 303 (2020) 110247 (https://doi.org/10.1016/j.micromeso.2020.110247)

F. Gandía-Herrero, J. Escribano, F. García-Carmona, Planta 232 (2010) 449 (https://doi.org/10.1007/s00425-010-1191-0)

F. C. Stintzing, R. Carle, Trends Food Sci. Technol. 15 (2004) 19 (https://doi.org/10.1016/j.tifs.2003.07.004)

I. Belhadj Slimen, T. Najar, M. Abderrabba, J. Agric. Food Chem. 65 (2017) 675 (https://doi.org/10.1021/acs.jafc.6b04208)

I. Sadowska-Bartosz, G. Bartosz, Molecules 26 (2021) 2520 (https://doi.org/10.3390/molecules26092520)

C. Karavasili, E. Kontogiannidou, A.-T. Chatzitaki, P. Barmpalexis, D. G. Fatouros, Micropor. Mesopor. Mater. 305 (2020) 110343 (https://doi.org/10.1016/j.micromeso.2020.110343)

S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mater. 182 (2013) 32 (https://doi.org/10.1016/j.micromeso.2013.08.018)

N. K. Kortei, G.T. Odamtten, M. Obodai, V. Appiah, P.T. Akonor, Croat. Ј. Food Technol. Biotechnol. Nutr. 10 (2015) 66 (https://hrcak.srce.hr/147825)

M. Cruz-Romero, A. L. Kelly, J. P. Kerry, Innov. Food Sci. Emerg. Technol. 8 (2007) 30 (https://doi.org/10.1016/j.ifset.2006.05.002).