The influence of nanoclays on the mechanical and thermal properties of rigid PIR and PUR foams Scientific paper

Main Article Content

Ruslan Vlasov
Daria Ryabova
Sakina Zeynalova
Dmitry Sokolov
Sergey Ryabov


The effect of small amounts of chemically modified nanosized clays (from 0.05 to 1 %) on the morphological, physical-mechanical and thermo­physical characteristics of rigid polyurethane–polyisocyanurate (PIR) and poly­urethane (PUR) foams has been studied. The effect of these additives on the structure of the resulting material, the change in its compressive strength, Young’s modulus, mass loss during combustion, and thermal conductivity are evaluated. Based on the results obtained, it is noted that the addition of small amounts (up to 0.2 %) of chemically modified Cloisite 30B nanoclay effect­ively reduces the average cell size of nanocomposite foams, which leads to an improvement in their performance.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
R. Vlasov, D. . Ryabova, S. Zeynalova, D. Sokolov, and S. Ryabov, “The influence of nanoclays on the mechanical and thermal properties of rigid PIR and PUR foams: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 4, pp. 409–421, Jan. 2023.


U. Stirna, I. Beverte, V. Yakushin, U. Cabulis, J. Cell. Plast. 47 (2011) 337 (

H. Ulrich, J. Cell. Plast. 17 (1981) 31 (

A. Al Nabulsi, D. Cozzula, T. Hagen, W. Leitner, T. E. Muller, Polym. Chem. 9 (2018) 4891 (

J. N. Gibb, J. M. Goodman, Org. Biomol. Chem. 11 (2013) 90 (

Bozyel, Y. I. Keser, D. Gokcen, Sens. Actuators, A 332 (2021) 113056 (

G. Tao, J. Yuan, Q. Chen, W. Peng, R. Yu, S. Basack, Constr. Build. Mater. 295 (2021) 123609 (

X. Zhang, S. Sun, B. Liu, Z. Wang, H. Xie, Int. J. Polym. Anal. Charact. 27 (2022) 302 (

A. M. Norouzi, M. E. Kojabad, M. Chapalaghi, A. Hosseinkhani, A. A. Nareh, E. N. Lay, J. Mol. Liq. 360 (2022) 119540 (

E. Ciecierska, M. Jurczyk-Kowalska, P. Bazarnik, M. Gloc, M. Kulesza, M. Kowalski, S. Krauze, M. Lewandowska, Compos. Struct. 140 (2016) 67 (

L. Madaleno, R. Pyrz, A. Crosky, L. R. Jensen, J. C. M. Rauhe, V. Dolomanova, A. M. M. V. B. Timmons, J. J. C. Pinto, J. Norman, Composites, A 44 (2013) 1 (

C. Caglayan, I. Gurkan, S. Gungor, H. Cebeci, Comosites, A 115 (2018) 187 (

M. Modesti, A. Lorenzetti, S. Besco, Polym. Eng. Sci. 47 (2007) 1351 (

D. Yan, L. Xu, C. Chen, J. Tang, X. Ji, Z. Li, Polym. Int. 61 (2012) 1107 (

J. Espadas-Escalante, F. Aviles, Mech. Mater. 91 (2015) 167 (

S. Q. Tan, T. Abraham, D. Ference, C. W. Macosko, Polymer 52 (2011) 2840 (

M. Modesti, A. Lorenzetti, C. Dall’Acqua, Polym. Eng. Sci. 45 (2005) 260 (

M. S. Han, Y. H. Kim, S. J. Han, S. J. Choi, S. B. Kim, W. N. Kim, J. Appl. Polym. Sci. 110 (2008) 376 (

S. Semenzato, A. Lorenzetti, M. Modesti, E. Ugel, D. Hrelja, S. Besco, R. A. Michelin, A. Sassi, G. Facchin, F. Zorzi, R. Bertani, Appl. Clay Sci. 44 (2009) 35 (

T. U. Parto, G. Harikrishnan, A. Misra, D. V. Khakhar, Polym. Eng. Sci. 48 (2008) 1778 (

Xu, T. S. Fisher, Int. J. Heat Mass Transfer 49 (2006) 1658 (

C. C. Zeng, N. Hossieny, C. Zhang, B. Wang, Polymer 51 (2010) 655 (

X. M. Han, C. C. Zeng, L. J. Lee, K. W. Koelling, D. L. Tomasko, Polym. Eng. Sci. 43 (2003) 1261 (

J. Bhinder, P. K. Agnihotri, J. Cell. Plast. 57 (2020) 287 (

D. X. Yan, K. Dai, Z. D. Xiang, Z. M. Li, X. Ji, W. Q. Zhang, J. Appl. Polym. Sci. 120 (2011) 3014 (

J. Xiong, D. Zhou, Z. Zheng, X. Yang, X. Wang, Polymer 47 (2006) 1763 (

ISO 3219-2:2021: Rheology — Part 2: General principles of rotational and oscillatory rheometry (2021)

ISO 148696:2009: Plastics — Polyurethane raw materials — Determination of isocyanate content (2009)

ASTM D1622-20: Standard Test Method for Apparent Density of Rigid Cellular Plastics (2020)

EN 826:2013: Thermal insulating products for building applications - Determination of compression behaviour (2013)

ASTM D6226-05: Standard Test Method for Open Cell Content of Rigid Cellular Plastics (2005)

EN 12667:2001: Building materials and products of high and medium thermal resistance. Methods of determination of thermal resistance by means of guarded hot plate and heat flow meter (2001)

C. Brondi, E. D. Maio, L. Bertucelli, V. Parenti, T. Mosciatti, J. Cell. Plast. 58 (2022) 121 (

V. Kumar, N. P. Suh, Polym. Eng. Sci. 30 (1990) 1323 (

J. E. Weller, V. Kumar, Polym. Eng. Sci. 50 (2010) 2160 (

D. V. Pikhurov, PhD thesis, ITMO University, Saint-Petersburg, 2018, p. 128 (

D. V. Pikhurov, A. S. Sakhatskii, V. V. Zuev, Eur. Polym. J. 99 (2018) 403 (

J. Gibson, M. F. Ashby, Cellular Solids. Structure and properties, 2nd ed., Cambridge University Press, Cambridge, 1997, pp. 175–279 (

R. Yang, W. Hu, L. Xu, Y. Song, J. Li, Polym. Degrad. Stab. 112 (2015) 102 (

Oliveira-Salmazo, A. Lopez-Gil, F. Silva-Bellucci, A. E. Job, M. A. Rodriguez-

-Perez, Ind. Crops Prod. 80 (2016) 26 (

J. J. Espadas-Escalante, F. Aviles, P. I. Gonzalez-Chi, A. Oliva, J. Cell. Plast. 53 (2016) 215 (