A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain

Main Article Content

Marinela Šokarda Slavić
https://orcid.org/0000-0002-9041-552X
Vanja Ralić
https://orcid.org/0000-0002-3206-1831
Branislav Nastasijević
https://orcid.org/0000-0002-4529-1599
Milica Matijević
https://orcid.org/0000-0002-9846-6671
Zoran Vujčić
https://orcid.org/0000-0002-8963-2439
Aleksandra Margetić
https://orcid.org/0000-0003-2445-0375

Abstract

Poly(γ-glutamic acid) (PGA), naturally produced by Bacillus species, is a biodegradable, non-toxic, biocompatible and non-immunogenic negatively charged polymer. Due to its properties, it has found various applications in the food, cosmetic and pharmaceutical industries. In this work, Bacillus subtilis 17B was selected as the best PGA producer among fifty wild-types Bacillus strains tested and characterized as a glutamate-independent producer. The pro­duction of PGA by the newly identified strain was optimized and increased tenfold using the Box–Behnken experimental design. The purity of PGA after recovery and purification from the fermentation broth was confirmed by SDS-PAGE followed by methylene blue staining. PGA was characterized by ESI MS and used for the preparation of a new nanocomposite with TiO2. The syn­thesis of PGA/TiO2 nanocomposite, its structural analysis, and cytotoxic effect on the cervical cancer cell line (HeLa cell) was investigated to determine the potential anti-cancer usage of this newly prepared material. It is encouraging that PGA/TiO2 nanocomposite showed an increased cytotoxic effect compared to TiO2 alone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Šokarda Slavić, V. . Ralić, B. Nastasijević, M. Matijević, Z. Vujčić, and A. Margetić, “A novel PGA/TiO2 nanocomposite prepared with poly(γ-glutamic acid) from the newly isolated Bacillus subtilis 17B strain”, J. Serb. Chem. Soc., vol. 88, no. 10, pp. 985–997, Oct. 2023.
Section
Biochemistry & Biotechnology

Funding data

References

I. Bajaj, R. Singhal, Bioresour. Technol. 102 (2011) 5551 (https://doi.org/10.1016/j.biortech.2011.02.047)

W. E. Hanby, H. N. Rydon, Biochem. J. 40 (1946) 297 (https://doi.org/10.1042/bj0400297)

S. bin Park, M. H. Sung, H. Uyama, D. K. Han, Prog. Polym. Sci. 113 (2021) 101341 (https://doi.org/10.1016/j.progpolymsci.2020.101341)

C. Wang, M. Feng, J. Deng, Y. Zhao, X. Zeng, L. Han, S. Pan, C. Wu, Int. J. Pharm. 398 (2010) 237 (https://doi.org/10.1016/j.ijpharm.2010.07.048)

M. Moriyama, H. Uyama, A. J. van der Vlies, U. Hasegawa, Colloid Polym. Sci. 293 (2015) 1245 (https://doi.org/10.1007/s00396-015-3516-9)

D. Ziental, B. Czarczynska-Goslinska, D. T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T. Goslinski, L. Sobotta, Nanomaterials 10 (2020) 387 (https://doi.org/10.3390/nano10020387)

F. F. Hezayen, B. H. A. Rehm, B. J. Tindall, A. Steinbüchel, Int. J. Syst. Evol. Microbiol. 51 (2001) 1133 (https://doi.org/10.1099/00207713-51-3-1133)

T. Candela, M. Moya, M. Haustant, A. Fouet, Can. J. Microbiol. 55 (2009) 627 (https://doi.org/10.1139/w09-003)

J. H. Do, H. N. Chang, S. Y. Lee, Biotechnol. Bioeng. 76 (2001) 219 (https://doi.org/10.1002/bit.1186)

M. Schallmey, A. Singh, O. P. Ward, Can. J. Microbiol. 17 (2004) 1 (https://doi.org/10.1139/W03-076)

A. Goto, M. Kunioka, Biosci. Biotechnol. Biochem. 56 (1992) 37 (https://doi.org/10.1271/bbb.56.1031)

G. Du, G. Yang, Y. Qu, J. Chen, S. Lun, Process Biochem. 40 (2005) 2143 (https://doi.org/10.1016/j.procbio.2004.08.005)

F. Shi, Z. Xu, P. Cen, Biotechnol. Bioprocess Eng. 11 (2006) 251 (https://doi.org/10.1007/BF02932039)

C. Zhang, D. Wu, X. Qiu, Sci. Rep. 8 (2018) 17934 (https://doi.org/10.1038/s41598-018-36439-4)

Y. H. Ko, R. A. Gross, Biotechnol. Bioeng. 57 (1998) 430 (https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4<430::AID-BIT6>3.0.CO;2-N)

D. A. Hopwood, M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, M. Ward, H. Schrempf, Genetic Manipulation of Streptomyces: A Laboratory Manual, John Innes Foundation, Foulsham, 1985

D. J. Lane, 16S/23S rRNA Sequencing. in Nucleic acid techniques in bacterial systematics, E. Stackebrandt and M. Goodfellow, Eds., Wiley, New York, 1991

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Nucleic Acids Res. 25 (1997) 3389 (https://doi.org/10.1093/nar/25.17.3389)

C. Park, J.-C. Choi, Y.-H. Choi, H. Nakamura, K. Shimanouchi, T. Horiuchi, H. Misono, T. Sewaki, K. Soda, M. Ashiuchi, M.-H. Sung, J. Mol. Catal., B 35 (2005) 128 (https://doi.org/10.1016/j.molcatb.2005.06.007)

U. K. Laemmli, Nature 227 (1970) 680 (https://doi.org/10.1038/227680a0)

F. Yamaguchi, Y. Ogawa, M. Kikuchi, K. Yuasa, H. Motai, Biosci. Biotechnol. Biochem. 60 (1996) 255 (https://doi.org/10.1271/bbb.60.255)

T. Rajh, A. E. Ostafin, O. I. Micic, D. M. Tiede, M. C. Thurnauer, J. Phys. Chem. 100 (1996) 4538 (https://doi.org/10.1021/jp952002p)

R. C. Thompson, Inorg. Chem. 23 (1984) 1794 (https://doi.org/10.1021/ic00181a003)

D. Lin, S. D. Story, S. L. Walker, Q. Huang, W. Liang, P. Cai, Environ. Pollut. 228 (2017) 35 (https://doi.org/10.1016/j.envpol.2017.05.025)

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107 (https://doi.org/10.1093/jnci/82.13.1107)

G. A. Birrer, A.-M. Cromwick, R. A. Gross, Int. J. Biol. Macromol. 16 (1994) 265 (https://doi.org/10.1016/0141-8130(94)90032-9)

J. M. Buescher, A. Margaritis, Crit. Rev. Biotechnol. 27 (2007) 1 (https://doi.org/10.1080/07388550601166458)

H. Xu, M. Jiang, H. Li, D. Lu, P. Ouyang, Process Biochem. 40 (2005) 519 (https://doi.org/10.1016/j.procbio.2003.09.025)

D. Wang, J.-S. Hwang, D.-H. Kim, S. Lee, D.-H. Kim, M.-H. Joe, Process Biochem. 92 (2020) 164 (https://doi.org/10.1016/j.procbio.2019.11.034)

W. Zeng, G. Chen, Y. Guo, B. Zhang, M. Dong, Y. Wu, J. Wang, Z. Che, Z. Liang, AMB Express 7 (2017) 213 (https://doi.org/10.1186/s13568-017-0512-0)

M. Cao, W. Geng, L. Liu, C. Song, H. Xie, W. Guo, Y. Jin, S. Wang, Bioresour. Technol. 102 (2011) 4251 (https://doi.org/10.1016/j.biortech.2010.12.065)

M. Ashiuchi, K. Soda, H. Misono, Biochem. Biophys. Res. Commun. 263 (1999) 6 (https://doi.org/10.1006/bbrc.1999.1298)

F. Yamaguchi, Y. Ogawa, M. Kikuchi, K. Yuasa, H. Motai, Biosci. Biotechnol. Biochem. 60 (1996) 255 (https://doi.org/10.1271/bbb.60.255)

C. Ho, C. Lam, M. Chan, R. Cheung, L. Law, L. Lit, K. Ng, M. Suen, H. Tai, Clin. Biochem. Rev. 24 (2003) (https://pubmed.ncbi.nlm.nih.gov/18568044)

I. Kwiecień, I. Radecka, M. Kowalczuk, K. Jelonek, A. Orchel, G. Adamus, J. Am. Soc. Mass Spectrom. 28 (2017) 2223 (https://doi.org/10.1007/s13361-017-1731-y)

G. Kedia, D. Hill, R. Hill, I. Radecka, J. Nanosci. Nanotechnol. 10 (2010) 5926 (https://doi.org/10.1166/jnn.2010.2614)

A. R. Bhat, V. U. Irorere, T. Bartlett, D. Hill, G. Kedia, M. R. Morris, D. Charalampopoulos, I. Radecka, AMB Express 3 (2013) 1 (https://doi.org/10.1186/2191-0855-3-36)

S. W. Bruun, A. Kohler, I. Adt, G. D. Sockalingum, M. Manfait, H. Martens, Appl. Spectrosc. 60 (2006) 1029 (https://doi.org/10.1366/000370206778397371)

A. S. Adeleye, A. A. Keller, Environ. Sci. Technol. 50 (2016) 12258 (https://doi.org/10.1021/acs.est.6b03684)

G. R. Wiese T. W. Healy, J. Colloid Interface Sci. 52 (1975) 452 (https://doi.org/10.1016/0021-9797(75)90270-2)

M. Hamzeh, G. I. Sunahara, Toxicology in Vitro 27 (2013) 864 (https://doi.org/10.1016/j.tiv.2012.12.018)

S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, L. Tayebi, Int. J. Nanomedicine 15 (2020) 3447 (https://doi.org/10.2147/IJN.S249441).