Synthesis of sodium silicate crystals from rice husk ash Scientific paper
Main Article Content
Abstract
The rich husk is an agricultural waste of rice cultivation worldwide, which is highly rich in amorphous silica. Rice husk obtained from Dagiri was pyrolyzed at 750 °C to give white ash (RHA) which was further treated with acid (ARHA). The ash was reacted with sodium hydroxide at 90 °C for 2.5 h to produce sodium silicate crystals. Sodium silicate synthesized in the study was characterized for some physicochemical parameters. Their structural and morphological properties were assessed using a Fourier transform infra-red spectrophotometer (FTIR), X-ray diffractometer (XRD) and scanning electron microscope (SEM). The mineralogical composition of the ash and sodium silicate was investigated with energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The sodium silicate produced has a melting point of 61 °C, pH of 12.03 and appeared as brownish–white to clear-white in colour. The RHA and ARHA from XRD investigation showed patterns which match the mineral phase cristobalite, while that of the sodium silicate XRD patterns match the mineral heptahydrate disodium trioxosilicate as the most dominant phase. Rietveld refinement of the XRD pattern for the sodium silicate gave Rwp = 12.81, Rexp = 5.55, χ2 = 5.3274 and GoF = 2.3081 against a dual phase analysis. The crystals synthesized are suitable for use in cosmetic formulations.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. A. Ajeel, K. A. Sukkar, N. K. Zedin, IOP Conf. Ser.: Mater. Sci. Eng. 881 (2020) 012096 (https://doi.org/10.1088/1757-899X/881/1/012096)
K. T. Tong, R. Vinai, M. N. Soutsos, J. Clean. Prod. 201 (2018) 272 (https://doi.org/10.1016/j.jclepro.2018.08.025)
H. Gandhi, A. N. Tamaskar, H. Parab, & S. Purohit, J. Basic Appl. Eng. Res. 2 (2015) 330 (https://www.krishisanskriti.org/vol_image/07Jul2015100713xxHeta%20Gandhi%20%20%20%20%20%20%20%20%20%20%20%20%20%20330-333.pdf)
S. S. Owoeye, O. E. Isinkaye, Sci. J. Chem. 5 (2017) 8 (https://doi.org/10.11648/j.sjc.20170501.12)
G. T. Adylov, S. A. Faiziev, M. S. Paizullakhanov, S. Mukhsimov, É. Nodirmatov, Tech. Phys. Lett. 29 (2003) 221 (http://dx.doi.org/10.1134/1.1565639)
M. K. Omatola, D. A. Onojah, Int. J. Phy. Sci. 4 (2009)189 (http://www.academicjournals.org/ijps/PDF/pdf2009/April/Omotola%20and%20Onoja h.pdf)
R. V Krishnarao, J. Subrahmanyam, & T. J. Kumar, J. Eur. Ceram. Soc. 21 (2001) 99 (https://doi.org/10.1016/S0955-2219(00)00170-9)
A. Mehta, R. P. Ugwekar, IJERA 5 (2015) 43 (https://www.ijera.com/papers/Vol5_issue8/)
H. Engelhardt, L. E. Von Borstel, Z. Dtsch. Ges. Grundwasser 165 (2020) 115 (https://doi.org/10.1127/1860-1804/2014/0057)
N. V. Zubkova, I. V. Pekov, D. Yu. Pushcharovsky, Min. Mag. 78 (2014). 253 (https://doi.org/10.1180/minmag.2014.078.2.03)
V. Kahlenberg, Min. Chim. 64 (2010) 716 (https://doi.org/10.2533/chimia.2010.716)
M. Macdonald, X. Li, AADE Fluids Tech. Conf. Exh.(2014), 2014, pp. 1–6 (https://www.aade.org/download_file/2069/420)
M. Adamu, J. O. Okafor, G. T. David, J. Sci. Technol. Math. Educ. 11 (2015) 163 (https://jostmed.futminna.edu.ng/image/JOSTMED/Jostmed_11_2_August_2015)
J. X. Dong, L. P. Li, H. Xu, F. Deng, G. Y. Zhang, J. P. Li, X. J. Ai, Tenside Surf. Det. 44 (2007) 34 (https://doi.org/10.3139/113.100326)
S. Yunusa, I. A. Mohammed-Dabo, A. S. Ahmed, Int. J. Sci. Eng. Res. 6 (2015) 1183 (http://www.ijser.org)
J. L. Thompson, B. E. Scheetz, M. R. Schock, D. A. Lytle, Pro. AWWA Wat. Qual. Tech. Conf. 9 (1997) (https://aniq.org.mx/pdf)
G. K. Sharma, J. Gadiya and M. Dhanawat, Textbook of Cosmetic Formulations (https://www.researchgate.net/publication/325023106)
E. L. Foletto, E. Gratieri, L. H. Oliveira, S. L. Jahn, Mater. Res. 9 (2006) 335 (https://doi.org/10.1590/S1516-14392006000300014)
Y. Shen, P. Zhao, Q. Shao, Micropor. Mesopor. Mater. 188 (2014) 46 (https://doi.org/10.1016/j.micromeso.2014.01.005)
X. Liu, Z. Li, H. Chen, L. Yang, Y. Tian, Z. Wang, Res. Chem. Intermed. 42 (2015) 3887 (https://doi.org/10.1007/s11164-015-2251-7)
J. Monzo, M. V Borrachero, A. Mellado, L. M. Ordon, J. Paya, Cem. Concr. Res. 31 (2001) 227 (https://doi.org/10.1016/S0008-8846(00)00466-X)
R. Patil, R. Dongre, J. Meshram, IOSR J. Appl. Chem. 2014 (2014) 26 (https://www.iosrjournals.org/iosr-jac/papers/ICAET-2014/volume-1/6.pdf)
G. V. V. Gowthami, A. Sahoo, MSc Thesis, National Institute of Technology, Rourkela, 2015 (http://ethesis.nitrkl.ac.in/6867/1/Preparation_Gowthami_2015.pdf)
B. F. Shihab, Iraqi J. Phys. 16 (2018) 117 (https://doi.org/10.30723/ijp.v16i39.109)
S. S. Owoeye, S. M. Abegunde, B. Oji, Global J. Eng. Tech. Adv. 06(01) (2021) 066 (https://doi.org/10.30574/gjeta.2021.6.1.0001)
A. G. A. Siregar, R. Manurung, T. Taslim, Indones. J. Chem. 21 (2021) 88 (https://doi.org/10.22146/ijc.53057)
E. L. Foletto, E. Gratieri, L. H. de Oliveira, S. L. Jahn, Mater. Res. 9 (2006) 335 (https://doi.org/10.1590/S1516-14392006000300014)
N. Döbelin, R. Kleeberg, J. Appl. Crystallogr. 48 (2015) 1 (https://doi.org/10.1107/S1600576715014685)
I. U. Haq, K. Akhtar, A. Malik, J. Chem. Soc. Pak. 36 (2014) 382 (https://www.researchgate.net/publication/286071234)
P. Taylor, J. P. Nayak, J. Bera, Trans. Indian Ceram. Soc. 68 (2015) 37 (https://doi.org/10.1080/0371750X.2009.11082163)
I. M. Joni, L. Nulhakim, M. Vanitha, C. Panatarani, J. Phys. Conf. Ser. 1080 (2018) 012006 (https://doi.org/10.1088/1742-6596/1080/1/012006)
L. Fernández-Carrasco, D. Torrens-Martín, L.M. Morales, Sagrario Martínez-Ramírez, in Infrared Spectroscopy – Materials Science, Engineering and Technology, T. Theophanides, Ed.,. InTech, Rijeka, 2012 (https://doi.org/10.5772/36186)
C. Kongmanklang, K. Rangsriwatananon, J. Spectrosc., Spectrosc. Mater. Chem. 2015 (2015) 696513 (https://doi.org/10.1155/2015/696513)
J. Coates, in Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed., John Wiley & Sons Ltd, Chichester, 2000, pp. 10815–10837 (https://analyticalscience.wiley.com/do/10.1002/sepspec.10120education/full/i97dca9608c7bfa88fcf79f9b29f68226.pdf)
P. E. Imoisili, K. O. Ukoba, T. Jen, Bol. Soc. Esp. Cerám. Vidrio 59 (2020) 159 (https://doi.org/10.1016/j.bsecv.2019.09.006).