Health risk assessment of potentially harmful substances from fly ashes generated by coal and coal waste combustion Scientific paper
Main Article Content
Abstract
Lignite and coal waste used as feed fuels in thermal power plants (TPPs) and semi-industrial fluidized bed boiler (FBB), as well as their representative fly ashes (FAs), were examined. Fly ashes were compared employing anions and cations content in correspondent water extracts, trace elements and polycyclic aromatic hydrocarbon concentrations, as well as health risk assessments of substances known to be of concern for public health. Fluoride and sulfate contents in water extracted FAs are far below the legislation limits for waste, classifying all investigated FAs as non-hazardous. Among investigated trace elements, Cd content is the lowest, while Mn content is the highest. The highest enrichment ratios are noticed for As, Pb, Hg, Cu, V and Cr. The results indicate that total PAHs content is elevated in FA from the combustion of coal waste (AFB), with fluoranthene prevailing. The cancer risk of As and the non-cancer risk of As and Ni in some FAs surpass their respective permissible limits. The incremental lifetime cancer risk of an adult population indicates a potential PAHs risk in AFB, whereas all other fly ashes are within safe limits.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-68/2022-14/200017
References
Coal information: overview, International Energy Agency, Paris, 2019
Added value from coal, https://euracoal.eu/info/coal-industry-across-europe/added-value/(accessed December 08, 2022)
I. Obernberger, G. Thek, Biomass Bioenergy 27 (2004) 653 (https://doi.org/10.1016/j.biombioe.2003.07.006)
B. S. Repić, M. J. Paprika, M. R. Mladenović, S. Đ. Nemoda, A. M. Erić, D. V. Dakić, in Proceedings of International Conference "Power Plants 2018", 2018, Zlatibor, Serbia, Institute of Agricultural Economics, Belgrade, pp. 318–329
S. Singh, L. C. Ram, R. E. Masto, S. K. Verma, Int. J. Coal Geol. 87 (2011) 112 (https://doi.org/10.1016/j.coal.2011.05.006)
Technical report, Electric Power Industry of Serbia, 2018
D. Saha, D. Chatterjee, S. Chakravarty, T. Roychowdhury, Nat. Resour. Res. 28 (2019) 1505 (https://doi.org/10.1007/s11053-019-09451-2)
F. Jiao, L. Zhang, Z. Dong, T. Namioka, N. Yamada, Y. Ninomiya, Fuel Process. Technol. 152 (2016) 108 (https://doi.org/10.1016/j.fuproc.2016.06.013)
A. Tasić, I. Sredović Ignjatović, L. Ignjatović, M. Ilić, M. Antić, J. Serb. Chem. Soc. 81 (2016) 1081 (https://doi.org/10.2298/jsc160307038t)
H.P. Jambhulkar, S.M.S. Shaikh, S.M. Kumar, Chemosphere 213 (2018) 333 (https://doi.org/10.1016/j.chemosphere.2018.09.045)
J. Han, Y. Liang, B. Zhao, Y. Wang, F. Xing, L. Qin, Environ. Pollut. 251 (2019) 312 (https://doi.org/10.1016/j.envpol.2019.05.022)
Priority pollutant list, https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf (accessed November 23, 2022)
S. K. Sahu, R. C. Bhangare, P. Y. Ajmal, S. Sharma, G. G. Pandit, V. D. Puranik, Microchem. J. 92 (2009) 92 (https://doi.org/10.1016/j.microc.2009.02.003)
K. Ravindra, R. Sokhi, R. Van Grieken, Atmos. Environ. 42 (2008) 2895 (https://doi.org/10.1016/j.atmosenv.2007.12.010)
N. Wang, X. Sun, Q. Zhao, Y. Yang, P. Wang, J. Hazard. Mater. 396 (2020) 122725 (https://doi.org/10.1016/j.jhazmat.2020.122725)
Human health evaluation manual (part A), risk assessment guidance for superfund, Office of Emergency and Remedial Response, Washington, DC, 1989
ASTM D346-90: Standard practice for collection and preparation of coke samples for laboratory analysis (1998)
ASTM D2013-07: Standard practice for preparing coal samples for analysis (2007)
S. Lacorte, F. Bono-Blay, M. Cortina-Puig, in: Comprehensive Sampling and Sample Preparation. J. Pawliszyn, Ed., Academic Press, Oxford, 2012, pp. 65–84
ISO 1953:1994: Hard Coals - Size Analysis (1994)
ASTM D7582-12: Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis (2012)
ASTM D5373-14: Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke (2014)
ASTM D5016-08: Standard test method for total sulfur in coal and coke combustion residues using a high-temperature tube furnace combustion method with infrared absorption (2008)
ASTM D3176-09: Standard practice for ultimate analysis of coal and coke (2009)
R. E. Masto, E. Sarkar, J. George, K. Jyoti, P. Dutta, L. C. Ram, Fuel Process. Technol. 132 (2015) 139 (https://doi.org/10.1016/j.fuproc.2014.12.036)
J. Z. Buha-Marković, A. D. Marinković, S. Đ. Nemoda, J. Z. Savić, Environ. Pollut. 266 (2020) 115282 (https://doi.org/10.1016/j.envpol.2020.115282)
Integrated Risk Information System, US EPA, 2005 (http://www.epa.gov/iris)
Exposure factors handbook: 2011 edition, National Center for Environmental Assessment, Office of Research and Development, Washington, DC, 2011
S. Chakravarty, A. Mohanty, A. Banerjee, R. Tripathy, G. K. Mandal, M. R. Basariya, M. Sharma, Fuel 150 (2015) 96 (https://doi.org/10.1016/j.fuel.2015.02.015)
C.-L. Chou, Int. J. Coal Geol. 100 (2012) 1 (https://doi.org/10.1016/j.coal.2012.05.009)
N. Koukouzas, C. Ketikidis, G. Itskos, Fuel Process. Technol. 92 (2011) 441 (https://doi.org/10.1016/j.fuproc.2010.10.007)
R. Barbosa, D. Dias, N. Lapa, H. Lopes, B. Mendes, Fuel Process. Technol. 109 (2013) 124 (https://doi.org/10.1016/j.fuproc.2012.09.048)
M. Izquierdo, X. Querol, Int. J. Coal Geol. 94 (2012) 54 (https://doi.org/10.1016/j.coal.2011.10.006)
G. Wang, Z. Luo, J. Zhang, Y. Zhao, Minerals 5 (2015) 863 (https://doi.org/10.3390/min5040530)
E. Loginova, D. S. Volkov, P. M. F. van de Wouw, M. V. A. Florea, H. J. H. Brouwers, J. Clean. Prod. 207 (2019) 866 (https://doi.org/10.1016/j.jclepro.2018.10.022)
G. Chen, Y. Sun, Q. Wang, B. Yan, Z. Cheng, W. Ma, Fuel 240 (2019) 31 https://doi.org/10.1016/j.fuel.2018.11.131.
J. W. Kaakinen, R. M. Jorden, M. H. Lawasani, R. E. West, Environ. Sci. Technol. 9 (1975) 862 (https://doi.org/10.1021/es60107a012)
S. K. Verma, R. E. Masto, S. Gautam, D. P. Choudhury, L. C. Ram, S. K. Maiti, S. Maity, Fuel 162 (2015) 138 (https://doi.org/10.1016/j.fuel.2015.09.005)
S. Zhao, Y. Duan, Y. Li, M. Liu, J. Lu, Y. Ding, X. Gu, J. Tao, M. Du, Fuel 214 (2018) 597 (https://doi.org/10.1016/j.fuel.2017.09.093)
S. Liu, Y. Wang, Z. Zhang, Z. Li, C. Chen, T. Guo, Y. Mei, J. Dong, J. Electrostat. 96 (2018) 144 (https://doi.org/10.1016/j.elstat.2018.10.012)
Regulation on the systematic monitoring program of soil quality, indicators for assessing the risk of soil degradation, and methodology for remediation programs developing, Government of the Republic of Serbia, 2018 (in Serbian)
Supplemental guidance for developing soil screening levels for superfund sites, Washington, DC, 2002
Y. Chen, J. Zhang, F. Zhang, X. Liu, M. Zhou, Ecotoxicol. Environ. Saf. 156 (2018) 383 (https://doi.org/10.1016/j.ecoenv.2018.03.020).