Potentially toxic element accumulation in two Equisetum species spontaneously grown in the flotation tailings Scientific paper
Main Article Content
Abstract
Decades of mining activity have resulted in the accumulation of significant amounts of tailings that are deposited over the natural vegetation, forming deposits tens of meters thick. The tailings are poor in organic matter and macronutrients and contain a high concentration of potentially toxic elements (PTE). Their surface remains unvegetated for long periods of time and is susceptible to fluvial and wind erosion. Equisetum arvense and E. telmateia appear to be the first colonizers in the tailings of the Pb–Cu–Zn mine in Serbia. Each plant was sampled along with its associated substrate. Pseudototal and available metals in the substrate, as well as total As, Cd, Cu, Fe, Mn, Ni, Pb and Zn concentrations in the plant parts were determined by atomic absorption spectrophotometry. The findings show that both species have high bioaccumulation capacity and tolerance to otherwise toxic concentrations due to efficient accumulation, immobilization and detoxification of these elements in their underground parts. It is expected that the long-term presence of metal-tolerant horsetail species would increase the organic matter content of flotation residues, thus gradually improving their physical, chemical and biological properties. This, in turn, would promote the natural succession of other metal-tolerant plant species and soil microorganisms.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-68/2022-14/ 200178;451-03-68/2022-14/ 200019
References
J. S. Adiansyah, M. Rosano, S. Vink, G, Keir, J. Cleaner Prod. 108 (2015) 1050 (https://doi.org/10.1016/j.jclepro.2015.07.139)
Y. Liu, F Du, L. Yuan, H. Zeng, S. Kong, J. Hazard. Mater. 178 (2010) 999 (https://doi.org/10.1016/j.jhazmat.2010.02.038)
C. Bayliss, M. Bertram, K. Buxmann, B. de Gelas, S. Jones, L. Wu, Global primary aluminium industry 2010 life cycle inventor, in Energy Technology 2012: Carbon dioxide management and other technologies, M.D.Salazar-Villalpando, N.R. Neelameggham, D. P. Guillen, S. Pati, G. K. Krumdick, Eds., Wiley-TMS, Toronto, pp. 85–92
J. Escarré, C. Lefèbvre, S. Raboyeau, A. Dossantos, W. Gruber, J. C. Cleyet Marel, H. Frérot, N. Noret, S. Mahieu, C. Collin C, F. van Oort F, Water Air Soil Pollut. 216 (2011) 485 (https://doi.org/10.1007/s11270-010-0547-1)
R. Rezaei, M. Massinaei, A. Z. Moghaddam, Miner. Eng. 119 (2018) (https://doi.org/10.1016/j.mineng.2018.01.012)
J. V. Kalinović, S. M. Šerbula, A. A. Radojević, J. S. Milosavljević, T. S. Kalinović, M. M. Steharnik, Environ. Monit. Assess. 191 (2019) 15 (https://doi.org/10.1007/s10661-018-7134-0)
G. Andrejić, J. Šinžar-Sekulić, M. Prica, Ž. Dželetović, T, Rakić, Environ. Sci. Pollut. Res. 26 (2019) 34658 (https://doi.org/10.1007/s11356-019-06543-7)
R. A. Crane, D. E. Sinnett, P.J. Cleall, D. J. Sapsford, Resour. Conserv. Recycl. 123 (2017) 117 (https://doi.org/10.1016/j.resconrec.2016.08.009)
R. Ginocchio R, P. León-Lobos, E. C. Arellano, V. Anic, J. F. Ovalle, A. J. M. Baker, Environ. Sci. Pollut. Res. 24 (2017) 13484 (https://doi.org/10.1007/s11356-017-8894-8)
M. T. González, V. Á. López, Á. P. Fernández, B. R. Garrido, C. T. Cepeda, M. Mench, M. Puschenreiter, C. Q. Sabarís, F. M. García, P. S. Kidd, J. Environ. Manage. 168 (2017) 301 (https://doi.org/10.1016/j.jenvman.2016.09.019)
C. Husby, Bot. Rev. 79 (2013) 147 (https://doi.org/10.1007/s12229-012-9113-4)
R. L. Hauke, A taxonomic monograph of the genus Equisetum, subgenus Hippochaete Nova Hedwigia 8. Stuttgart, 1963, pp. 1–123 (https://western.marmot.org/Record/.b2346849x)
H. L. Cannon, H. T. Shacklette, H. Bastron, Geological Survey Bulletin 1278-A, United States government printing office, Washington, DC, 1968
D. Pant, V. Sharma, P. Singh, Toxicol. Rep. 2 (2015) 716 (https://doi.org/10.1016/j.toxrep.2015.04.006)
А. Channing, A. Zamuner, D. Edwards, D. Guido, Am. J. Bot. 98 (2011) 680 (https://doi.org/10.3732/ajb.1000211)
L. P. van Reeuwijk, Procedures for soil analysis, FAO/ISRIC, Wageningen, 2002, pp. 1–120 (https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf)
U.S. EPA 3051: Microwave assisted acid digestion of sediments, sludges and oils, 1998
M. Pansu, J. Gautheyroy, Handbook of soil analysis. Mineralogical, organic and inorganic methods, Springer, Berlin, 2006, pp.1–993 (https://doi.org/10.1007/978-3-540-31211-6)
A. J. Baker, J. Plant Nutr. 3 (1981) 643 (https://doi.org/10.1080/01904168109362867).
V. Stanković, V. Milošević, D. Milićević, M. Gorgievski, G. Bogdanović, Chem. Ind. Chem. Eng. Q. 24 (2018) 333 (https://doi.org/10.2298/CICEQ170817005S)
D. Kasowska, K Gediga, Z. Spiak, Environ. Sci. Pollut. Res. 25 (2018) 824 (https://doi.org/10.1007/s11356-017-0451-y)
А. Karczewska, K. Milko, Ecol. Chem. Eng., A 17 (2010) 395
W. Khalir, M. Hanafiah, S. So'ad, W Ngah, Pol. J. Chem. Technol. 13 (2012) 84 (https://doi.org/10.2478/v10026-011-0054-1)
L. Zheng, P. Meng, J. Taiwan Inst. Chem. Eng. 58 (2016) 391 (http://dx.doi.org/10.1016/j.jtice.2015.06.017)
N. Osmolovskaya, V. V. Dung, L. Kuchaeva, Bio. Comm. 63 (2018) 9 (https://doi. org/10.21638/spbu03.2018.103)
А. Kabata-Pendias, Trace elements in soils and plants, CRC Press, London, 2011
E. Epstein, Annu. Rev. Plant Physiol. 50 (1999) 641 (https://doi.org/10.1146/annurev.arplant.50.1.641)
V. García-Gaytán, E. Bojórquez-Quintal, F. Hernández-Mendoza, D. K. Tiwari, N. Corona-Morales, Z. Moradi-Shakoorian, J. Chil. Chem. Soc. 64 (2019) 4298 (http://dx.doi.org/10.4067/s0717-97072019000104298)
K. M. Cocker, D. E. Evans, M. J. Hodson, Physiol. Plant. 104 (2002) 608 (https://doi.org/10.1034/j.1399-3054.1998.1040413.x)
C. Zhang, L. Wang, Q. Nie, W. Zhang, F Zhang, Environ. Exp. Bot. 62 (2008) 300 (https://doi.org/10.1016/j.envexpbot.2007.10.024)
M. Sahebi, M. M. Hanafi, A. Siti Nor Akmar, M. Y. Rafii, P. Azizi, F. Tengoua, J. Nurul Mayzaitul Azwa, M. Shabanimofrad, Biomed Res. Int. 2015 (2015) 396010 (https://doi.org/10.1155/2015/396010)
J. A. Bhat, S. M. Shivaraj, P. Singh P, D. B. Navadagi, D. K. Tripathi, P. K. Dash, A. U. Solanke, H. Sonah, R. Deshmukh, Plants 8 (2019) 71 (https://doi.org/10.3390/plants8030071)
S. M. Zargar, R. Mahajan, J. A. Bhat, M. Nazir, R. Deshmukh, 3 Biotech 9 (2019) 73 (https://doi.org/10.1007/s13205-019-1613-z)
T. Morishita, J. K. Boratynski, J. Soil Sci. Plant Nutr. 38 (1992) 781 (https://doi.org/10.1080/00380768.1992.10416712)
A. A. Meharg, J. Hartley-Whitaker, New Phytol. 154 (2002) 29 (https://doi.org/10.1046/j.1469-8137.2002.00363.x)
A. Clark, T. Hutchinson, Enhancing natural succession on Yukon mine tailings sites: a low-input management approach, in: Mining Environment Research Group Report 2005-3, Geoscience Information and Sales, Indian and Northern Affairs, Whitehhorse, 2005
H. Deng, Z. H. Ye, M. H. Wong, Environ. Pollut. 132 (2004) 29 https://doi.org/10.1016/j.envpol.2004.03.030
I. W. R. Young, C. Naguit, S. J. Halwas, S. Renault, J. H. Markham, Restor. Ecol. 21 (2013) 498 (https://doi.org/10.1111/j.1526-100X.2012.00913.x)
J. May, Q. Yang, Y. Zhang, X. Zeng, Y. Zhong, D. Liu, MATEC Web of Conferences 100 (2017) 04030, https://doi.org/10.1051/matecconf/201710004030
D. Ranđelović, N. Mihailović, S. Jovanović, Int. J. Phytorem. 21 (2019) 707 (https://doi.org/10.1080/15226514.2018.1556590)
E. Kurniati, T. Imai, T. Higuchi, M. Sekine, J. Deg. Mining Lands Manage. 1 (2014) 93 ISSN: 2339-076X.