Copper leaching from the chalcopyrite-bearing MoS2 concentrate by mixed chlorides solution Scientific paper

Main Article Content

Narangarav Tumen-Ulzii
https://orcid.org/0000-0003-0010-1402
Burmaa Gunchin
https://orcid.org/0000-0001-5775-9227

Abstract

In this study, the dissolution of copper sulfide minerals by the ferric (FeCl3) and ferrous (FeCl2) chloride leaching for upgrading the content of mol­ybdenum disulfide (MoS2) in a molybdenite concentrate was investigated. The effect of various parameters was studied on the copper dissolution behaviour from the concentrate. In this matter, the copper dissolution was reached 94.84 % under the optimized leaching conditions. The kinetics of copper dissolution from the concentrate was established using a shrinking core model (SCM), and the process was controlled by diffusion, with a corresponding activation energy of 18.63 kJ mol-1 at the temperature range of 343–373 K. The amount of cop­per in the leachate was tested by the inductively coupled plasma-optical emis­sion spectrometer (ICP-OES) and the solid phase was studied by X-ray dif­fract­ion (XRD), and scanning electron microscope (SEM). Results of the exp­eri­ments show that the content of MoS2 in the solid residue was increased up to 88.59 % after the leaching.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Tumen-Ulzii and B. Gunchin, “Copper leaching from the chalcopyrite-bearing MoS2 concentrate by mixed chlorides solution: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 11, pp. 1149–1160, Nov. 2023.
Section
Metallic Materials and Metallurgy

Funding data

References

C. K. Gupta, Chemical Metallurgy, Principles and Practice, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 (ISBN: 3-527-30376-6)

A. R. Lansdown, Molybdenum Disulfide Lubrication, Elsevier, Swansea, 1999 (ISBN: 0-444-50032-4)

O. Samy, A. El Moutaouakil, Energies 14 (2021) 1 (https://doi.org/10.3390/en14154586)

D. Gupta, V. Chauhan, R. Kumar, Inorg. Chem. Commun. 121 (2020) 108200 (https://doi.org/10.1016/j.inoche.2020.108200)

E. L. R. Chiluiza, P. N. Donoso, J. Mex. Chem. Soc. 60 (2016) 238 (ISSN: 1870-249X)

N. Tumen-Ulzii, A. Batnasan, B. Gunchin, Miner. Eng. 185 (2022) 107715 (https://doi.org/10.1016/j.mineng.2022.107715)

R. Padilla, C. Opazo, M. C. Ruiz, Metall. Mater. Trans., B 46 (2015) 30 (https://doi.org/10.1007/s11663-014-0171-3)

R. Padilla, H. Letelier, M. C. Ruiz, Hydrometallurgy 137 (2013) 78 (https://doi.org/10.1016/j.hydromet.2013.05.012)

H. L. Jennings, P.H., Stanley, R.W. Ames, in Proceedings of Second Int. Symp. Hydrometall. New York (AIME), 1973, pp. 868–883

D. Guo, L. Fu, S. Wang, L. Zhang, J. Peng, Chem. Pap. 72 (2018) 2997 (https://doi.org/10.1007/s11696-018-0544-1)

A. A. Baba, K. I. Ayinla, F. A. Adekola, M. K. Ghosh, O. S. Ayanda, R. B. Bale, A. R. Sheik, S. R. Pradhan, Int. J. Min. Eng. Miner. Process. 1 (2012) 1 (https://doi.org/10.5923/j.mining.20120101.01)

M. Nicol, H. Miki, L. Velásquez-Yévenes, Hydrometallurgy 103 (2010) 86 (https://doi.org/10.1016/j.hydromet.2010.03.003)

Y. Li, F. Wang, B. Yang, J. Wu, & Y. Tian, J. Sustain. Metall. 6 (2020) 419 (https://doi.org/10.1007/s40831-020-00284-5)

N. T. Phuong Thao, S. Tsuji, S. Jeon, I. Park, C. B. Tabelin, M. Ito, N. Hiroyoshi, Hydrometallurgy 194 (2020) 105299 (https://doi.org/10.1016/j.hydromet.2020.105299)

N. Hiroyoshi, H. Miki, T. Hirajima, M. Tsunekawa, Hydrometallurgy 60 (2001) 185 (https://doi.org/10.1016/S0304-386X(00)00155-9)

J. Lu, D. Dreisinger, Miner. Eng. 45 (2013) 185 (https://doi.org/10.1016/j.mineng.2013.03.007)

O. Levenspiel, Electrochemical Reaction Engineering, John Willey & Sons, New York, 1999, ISBN: 0-471-25424-X

T. Agacayak, M. T. O. A. Ahmed, Acta Chem. Iasi 28 (2020) 82 (https://doi.org/10.2478/achi-2020-0006)

E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, A. Ballester, Hydrometallurgy 93 (2008) 81 (https://doi.org/10.1016/j.hydromet.2008.04.015)

Y. Turkmen, E. Kaya, J. Ore Dress. 11 (2009) 16

M. E. Taboada, P. C. Hernández, A. P. Padilla, N. E. Jamett, T. A. Graber, Metals 11 (2021) 866 (https://doi.org/10.3390/met11060866)

T. Hidalgo, L. Kuhar, A. Beinlich, A. Putnis, Hydrometallurgy 188 (2019) 140 (https://doi.org/10.1016/j.hydromet.2019.06.009)

T. Havlík, Hydrometallurgy, Principles and Application, CRC Press, Boca Raton, FL, 2008 (ISBN: 978-1-84569-461-6).