Identification of organic compounds using artificial neural networks and refractive index Scientific paper

Main Article Content

Innocent Abel Kirigiti
https://orcid.org/0000-0002-6198-3800
Nanik Siti Aminah
https://orcid.org/0000-0002-2767-6006
Samson Thomas
https://orcid.org/0000-0003-2954-2711

Abstract

Identification of chemical compounds has many applications in sci­ence and technology. However, this process still relies significantly on the knowledge and experience of chemists. Thus, the development of techniques for faster and more accurate chemical compound identification is essential. In this work, we demonstrate the feasibility of using artificial neural networks to accurately identify organic compounds through the measurement of refractive index. The models were developed based on the refractive index measurements in different wavelengths of light, from UV to the far-infrared region. The models were trained with about 250,000 records of experimental optical cons­tants for 60 organic compounds and polymers from published literature. The models performed with accuracies of up to 98 %, with better performance obs­erved for the refractive index measurements across the visible and IR regions. The proposed models could be coupled with other devices for autonomous identification of chemical compounds using a single-wavelength dispersive measure­ment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. A. Kirigiti, . N. S. Aminah, and Samson Thomas, “Identification of organic compounds using artificial neural networks and refractive index: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 10, pp. 1013–1023, Oct. 2023.
Section
Theoretical Chemistry

References

W. Shi, W.-E. Zhuang, J. Hur, L. Yang, Water Res. 188 (2021) 116406 (https://doi.org/10.1016/j.watres.2020.116406)

J. Borrull, A. Colom, J. Fabregas, F. Borrull, E. Pocurull, J. Chromatogr., A 1621 (2020) 461090 (https://doi.org/10.1016/j.chroma.2020.461090)

L. Díaz de León-Martínez, R. Flores-Ramírez, C. M. López-Mendoza, M. Rodríguez-

-Aguilar, G. Metha, L. Zúñiga-Martínez, O. Ornelas-Rebolledo, L. E. Alcántara-Quin-tana, Clin. Chim. Acta 522 (2021) 132 (https://doi.org/10.1016/j.cca.2021.08.014)

C. Zarfl, Anal. Bioanal. Chem. 411 (2019) 3743 (https://doi.org/10.1007/s00216-019-01763-9)

B. Nozière, M. Kalberer, M. Claeys, J. Allan, B. D’Anna, S. Decesari, E. Finessi, M. Glasius, I. Grgić, J. F. Hamilton, T. Hoffmann, Y. Iinuma, M. Jaoui, A. Kahnt, C. J. Kampf, I. Kourtchev, W. Maenhaut, N. Marsden, S. Saarikoski, J. Schnelle-Kreis, J. D. Surratt, S. Szidat, R. Szmigielski, A. Wisthaler, Chem. Rev. 115 (2015) 3919 (https://doi.org/10.1021/cr5003485)

T. F. G. G. Cova, A. A. C. C. Pais, Front. Chem. 7 (2019) 809 (https://doi.org/10.3389/fchem.2019.00809)

C. Janiesch, P. Zschech, K. Heinrich, Electron. Mark. 31 (2021) 685 (https://doi.org/10.1007/s12525-021-00475-2)

P. P. Shinde, S. Shah, in Proceedings of 2018 Fourth Int. Conf. Comput. Commun. Control Autom., 2018, pp. 1–6 (https://doi.org/10.1109/ICCUBEA.2018.8697857)

S. Dargan, M. Kumar, M. R. Ayyagari, G. Kumar, Arch. Comput. Methods Eng. 27 (2020) 1071 (https://doi.org/10.1007/s11831-019-09344-w)

E. Yabalak, J. Environ. Sci. Heal., A 53 (2018) 975 (https://doi.org/10.1080/10934529.2018.1471023)

E. Yabalak, Ö. Yilmaz, J. Iran. Chem. Soc. 16 (2019) 117 (https://doi.org/10.1007/s13738-018-1487-8)

E. Yabalak, B. Külekçi, A. M. Gizir, J. Environ. Sci. Heal., A 54 (2019) 1412 (https://doi.org/10.1080/10934529.2019.1647749)

M. H. W. N. Jinadasa, A. C. Kahawalage, M. Halstensen, N.-O. Skeie, K.-J. Jens, in Recent developments in atomic force microscopy and Raman spectroscopy for materials characterization. C. S. Pathak, S. Kumar, Eds., InTech Open, Rijeka, 2021 (https://doi.org/10.5772/INTECHOPEN.99770)

L. Pan, P. Zhang, C. Daengngam, S. Peng, M. Chongcheawchamnan, J. Raman Spectrosc. 53 (2022) 6 (https://doi.org/10.1002/jrs.6225)

X. Chen, L. Xie, Y. He, T. Guan, X. Zhou, B. Wang, G. Feng, H. Yu, Y. Ji, Analyst 144 (2019) 4312 (https://doi.org/10.1039/C9AN00913B)

T. Cooman, T. Trejos, A. H. Romero, L. E. Arroyo, Chem. Phys. Lett. 787 (2022) 139283 (https://doi.org/10.1016/J.CPLETT.2021.139283)

W. Zhou, Y. Tang, Z. Qian, J. Wang, H. Guo, RSC Adv. 12 (2022) 5053 (https://doi.org/10.1039/D1RA08804A)

C. Berghian-Grosan, D. A. Magdas, Talanta 218 (2020) 121176 (https://doi.org/10.1016/J.TALANTA.2020.121176)

J. M. Hollas, Modern spectroscopy, 4th ed., Wiley & Sons, Chichester, 2004, ISBN: 978-

-1-118-68160-2

M. W. Dong, Sep. Sci. Technol. 6 (2005) 47 (https://doi.org/10.1016/S0149-6395(05)80047-9)

J. P. Lightstone, L. Chen, C. Kim, R. Batra, R. Ramprasad, J. Appl. Phys. 127 (2020) 215105 (https://doi.org/10.1063/5.0008026)

S. A. Schustik, F. Cravero, I. Ponzoni, M. F. Díaz, Commun. Comput. Inf. Sci. 1408 (2021) 279 (https://doi.org/10.1007/978-3-030-76310-7)

N. Qi, Z. Zhang, Y. Xiang, Y. Yang, X. Liang, P. D. B. Harrington, Anal. Methods 7 (2015) 2333 (https://doi.org/10.1039/C4AY02665A)

T. Bikku, R. A. Fritz, Y. J. Colón, F. Herrera, Machine learning identification of organic compounds using visible light, 2022 (https://doi.org/10.48550/arxiv.2204.11832)

M. N. Polyanskiy, Refractive index database, https://refractiveindex.info/ (accessed: August 20, 2022)

J. W. Gooch, Encycl. Dict. Polym. (2011) 653 (https://doi.org/10.1007/978-1-4419-6247-8_10447)

J. K. Kim, J. Shao, Statistical Methods for Handling Incomplete Data, Chapman and Hall/CRC, Boca Raton, FL, 2021 (https://doi.org/10.1201/9780429321740)

A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and techniques to build intelligent systems, 2nd ed., O’Reilly Media, Inc., Sebastopol, CA, 2019, ISBN: 9781492032649

E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley, CA, 2019 (https://doi.org/10.1007/978-1-4842-4470-8)

Machine Learning in Chemistry, H. M. Cartwright, Ed., Royal Society of Chemistry, 2020 (https://doi.org/10.1039/9781839160233)

J. Han, J. Pei, H. Tong, Data mining: concepts and techniques, Morgan Kaufmann, Burlington, MA, 2011, ISBN 978-0-12-381479-1

F. Chollet, Deep Learning with Python, Manning Publications Co, Shelter Island, NY, 2017, ISBN 9781617294433

M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, A. Fernández-Delgado, J. Mach. Learn. Res. 15 (2014) 3133 (http://jmlr.org/papers/v15/delgado14a.html).