Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors Scientific paper

Main Article Content

Puja Mishra
https://orcid.org/0000-0002-8531-0942
Sumit Nandi
https://orcid.org/0009-0007-6358-441X
Ankit Chatterjee
Tridib Nayek
https://orcid.org/0009-0006-0698-4196
Souvik Basak
https://orcid.org/0000-0003-0380-6264
Amit Kumar Halder
https://orcid.org/0000-0002-4818-9047
Arup Mukherjee

Abstract

The drugs that are the most useful in all stages of Alzheimer’s disease (AD) are acetylcholinesterase (AChE) inhibitors. The objectives of this work are to generate various QSAR models for such drugs and to select a robust predictive models from the corresponding models. Studies were then focused on finding a range of pyrazole-like AChE inhibitors by 2D and 3D QSAR ana­lysis. The genetic algorithm-based multiple linear regression (GA-MLR) pro­vided the statistically robust 2D QSAR model that depicted the significance of the molecular volume and the number of multiple bonds along with the pre­sence/absence of specific atom-centred fragments and topological distance between 2D pharmacophoric features. Furthermore, these results were correl­ated well with the electrostatic and steric contour maps retrieved from the 3D QSAR (i.e., alignment-dependent molecular field analysis). The 2D QSAR analysis developed a highly statistical and reliable model, which was compared with the mechanistic interpretation of 3D structures and their electrostatic and steric field contributions leading to a predictive 3D QSAR model. The mole­cule-protein interactions, elicited by molecular docking, corroborated with the field interactions, as revealed by 2D QSAR. Thus, the developed comput­ational models and simulation analyses in the current work provide valuable inform­ation for the future design of pyrazole and spiropyrazoline analogs, as potent AChE inhibitors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Mishra, “Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 7-8, pp. 981–995, Aug. 2024.
Section
Organic Chemistry

References

M. Hernández-Rodríguez, J. Correa-Basurto, F. Martínez-Ramos, I. I. Padilla-Martínez, C. G. Benítez-Cardoza, E. Mera-Jiménez, M. C. Rosales-Hernández, J. Alzheimer’s Dis. 41 (2014) 1073 (https://doi.org/10.3233/JAD-140471)

S. Habtemariam, Molecules 24 (2019) 1519 (https://doi.org/10.3390/molecules24081519)

Y. Yamaguchi, H. Miyashita, H. Tsunekawa, A. Mouri, H. C. Kim, K. Saito, T. Matsuno, S. Kawashima, T. Nabeshima, J. Pharmacol. Exp. Ther. 317 (2006) 1079 (https://doi.org/10.1124/jpet.105.098640)

P. Mishra, S. Basak, A. Mukherjee, A. Basu, Lett. Drug Des. Discov. 19 (2021) 192 (https://doi.org/10.2174/1570180818666210813120444)

L. Lecanu, V. Papadopoulos, Recent Pat. CNS Drug Discov. 2 (2007) 113 (https://doi.org/10.2174/157488907780832715)

R. Chawla, A. Arora, M. K. Parameswaran, P. Chan, D. Sharma, S. Michael, T. K. Ravi, Acta Pol. Pharm. 67 (2010) 247 (https://www.ptfarm.pl/pub/File/acta_pol_2010/3_2010/247-253.pdf)

G. Gutti, D. Kumar, P. Paliwal, A. Ganeshpurkar, K. Lahre, A. Kumar, S. Krishnamurthy, S. K. Singh, Bioorg. Chem. 90 (2019) 103080 (https://doi.org/10.1016/j.bioorg.2019.103080)

Ecotoxicological QSARs, K. Roy Ed., Springer 2020, ISBN 978-1071601495

I. Sushko, A. K. Pandey, S. Novotarskyi, R. Körner, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V. V. Prokopenko, V. Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, I. I. Baskin, V. A. Palyulin, E. V. Rad-chenko, W. J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. Aires-De-Sousa, Q. Y. Zhang, A. Bender, F. Nigsch, L. Patiny, A. Williams, V. Tkachenko, I. V. Tetko, J. Cheminform. 3 (Suppl. 1) (2011) P20 (https://doi.org/10.1186/1758-2946-3-S1-P20)

P. Ambure, R. B. Aher, A. Gajewicz, T. Puzyn, K. Roy, Chemom. Intell. Lab. Syst. 147 (2015) 1 (https://doi.org/10.1016/j.chemolab.2015.07.007)

P. Tosco, T. Balle, J. Mol. Model. 17 (2011) 201 (https://doi.org/10.1007/s00894-010-0684-x)

J. Sadowski, J. Gasteiger, G. Klebe, J. Chem. Inf. Comp. Sci. 54 (1994) 1000 (https://pubs.acs.org/doi/10.1021/ci00020a039)

A. K. Halder, M. N. D. S. Cordeiro, Biomolecules 11 (2021) 1670 (https://doi.org/10.3390/biom11111670)

G. Kryger, I. Silman, J. L. Sussman, Structure 7 (1999) 297 (https://doi.org/10.1016/S0969-2126(99)80040-9)

H. Safarizadeh, Z. Garkani-Nejad, J. Mol. Graph. Model. 87 (2019) 129 (https://doi.org/10.1016/j.jmgm.2018.11.019)

T. K. Shameera Ahamed, V. K. Rajan, K. Muraleedharan, Food Sci. Hum. Wellness 8 (2019) 53 (https://doi.org/10.1016/j.fshw.2019.02.001)

O. Trott, A. J. Olson, J. Comput. Chem. 31 (2009) 455 (https://doi.org/10.1002/jcc.21334)

G. M. Morris, H. Ruth, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 30 (2009) 2785 (https://doi.org/10.1002/jcc.21256)

H. Sugimoto, Pure Appl. Chem. 71 (2009) 2031 (https://doi.org/10.1351/pac199971112031)

P. Mishra, P. Sharma, P. N. Tripathi, S. K. Gupta, P. Srivastava, A. Seth, A. Tripathi, S. Krishnamurthy, S. K. Shrivastava, Bioorg. Chem. 89 (2019) 103025 (https://doi.org/10.1016/j.bioorg.2019.103025)