Computer-aided approach for the identification of lead molecules as the inhibitors of cholinesterase’s and monoamine oxidases: Novel target for the treatment of Alzheimer disease Scientific paper

Main Article Content

Syeda Abida Ejaz
https://orcid.org/0000-0002-8516-7234
Mubashir Aziz
https://orcid.org/0000-0001-8868-4459
Ammara Fayyaz
https://orcid.org/0000-0002-0546-4870
Tanveer A. Wani
https://orcid.org/0009-0008-3498-4112
Seema Zargar
https://orcid.org/0000-0002-5622-0841

Abstract

This article has been corrected. See JSCS 2024:89(3), doi: 10.2298/JSC240325036E


Molecular docking is a promising and reliable technology for the purpose of discovering lead compounds via virtual screening. In addition to allowing for the testing of a large number of compounds, it also allows for the determination of how the selected compounds inhibit the targeted protein/rec­eptor based on the scoring function and ranking. Because selective choline­sterase and monoamine oxidase inhibitors play a critical role in the treatment of Alzheimer disease, this research focuses on elucidating the mechanism of binding interactions of a few quinolone derivatives within the active sites of cholinesterase (acetyl-cholinesterase (AChE) and butyrylcholinesterase (BChE) and monoamine oxidase (MAO, monoamine oxidase A & B). As a result of these discoveries, it is possible that the newly identified inhibitors will be used as lead compounds in the development of novel enzyme inhibitors for the treat­ment of specific diseases, hence enabling the development of novel therapeutic approaches.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. A. Ejaz, M. Aziz, A. Fayyaz, T. A. . Wani, and S. . Zargar, “Computer-aided approach for the identification of lead molecules as the inhibitors of cholinesterase’s and monoamine oxidases: Novel target for the treatment of Alzheimer disease: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 2, pp. 177–194, Mar. 2024.
Section
Theoretical Chemistry

Funding data

References

J. M. Shine, E. J. Müller, B. Munn, J. Cabral, R. J. Moran, M. Breakspear, Nat. Neurosci. 24 (2021) 765 (https://doi.org/10.1038/s41593-021-00824-6)

I. Gülçin, A. Scozzafava, C. T. Supuran, Z. Koksal, F. Turkan, S. Çetinkaya, S. H. Alwasel, J. Enzyme Inhib. Med. Chem. 31 (2016) 1698 (https://doi.org/10.3109/14756366.2015.1135914)

J. Patočka, K. Kuča, D. Jun, Acta Мed. (Hradec Kral.) 47 (2004) 215 (https://actamedica.lfhk.cuni.cz/media/pdf/18059694.2018.95.pdf)

J. R. Atack, E. K. Perry, J. R. Bonham, J. M. Candy, R. H. Perry, J. Neurochem. 47 (1986) 263 (https://doi.org/10.1111/j.1471-4159.1986.tb02858.x)

B. Li, J. A. Stribley, A. Ticu, W. Xie, L. M. Schopfer, P. Hammond, O. J. Lockridge, J. Neurochem. 75 (2000) 1320 (https://doi.org/10.1046/j.1471-4159.2000.751320.x_)

C. N. Pope, S. Brimijoin, Biochem. Pharmacol. 153 (2018) 205 (https://doi.org/10.1016/j.bcp.2018.01.044

R. M. Geha, K. Chen, J. Wouters, F. Ooms, J. C. Shih, J. Biol. Chem 277 (2002) 17209 (https://doi.org/10.1074/jbc.M110920200)

J. Grimsby, K. Chen, L. J. Wang, N. C. Lan, J. C. Shih, Proc. Nat. Acad. Sci. 88 (1991) 3637 (https://doi.org/10.1073/pnas.88.9.3637)

R. M. Geha, I. Rebrin, K. Chen, J. C. Shih, J. Biol. Chem. 276 (2001) 9877 (https://doi.org/10.1074/jbc.M006972200)

J. Grimsby, N. C. Lan, R. Neve, K. Chen, J. C. Shih, J. Neurochem. 55 (1990) 1166 (https://doi.org/10.1111/j.1471-4159.1990.tb03121.x)

K. N. Westlund, R. M. Denney, L. M. Kochersperger, R. M. Rose, C. W. Abell, Science 230 (1985) 181 (https://doi.org/10.1126/science.3875898)

R. J. Castellani, R. K. Rolston, M. A. Smith, Disease-a-Month 56 (2010) 484 (https://dx.doi.org/10.1016%2Fj.disamonth.2010.06.001)

C. Geula, S. Darvesh, Drugs Today 40 (2004) 711 (https://doi.org/10.1358/dot.2004.40.8.850473)

M. Mesulam, A. Guillozet, P. Shaw, B. Quinn, Neurobiol. Dis. 9 (2002) 88 (https://doi.org/10.1006/nbdi.2001.0462)

E. Giacobini, Int. J. Geriatr. Psychiatry 18 (2003) S1 (https://doi.org/10.1002/gps.935)

S. Darvesh, Curr. Alzheimer Res. 13 (2016) 1173 (https://doi.org/10.2174/1567205013666160404120542)

Z. Cai, Mol. Med. Rep. 9 (2014) 1533 (https://doi.org/10.3892/mmr.2014.2040)

S. Manzoor, N. Hoda, Eur. J. Med. Chem. 206 (2020) 112787 (https://doi.org/10.1016/j.ejmech.2020.112787)

P. O. Patil, S. B. Bari, S. D. Firke, P. K. Deshmukh, S. T. Donda, D.A. Patil, Bioorg. Med. Chem. 21 (2013) 2434 (https://doi.org/10.1016/j.bmc.2013.02.017)

G. Nesi, S. Sestito, M. Digiacomo, S. Rapposelli, Curr. Top. Med. Chem. 17 (2017) 3062 (https://doi.org/10.2174/1568026617666170607114232)

L. Mucke, Nature 461 (2009) 895 (https://doi.org/10.1038/461895a)

L. Blaikie, P. Kay, P. K. T. Lin, MedChemComm 10 (2019) 2052 (https://doi.org/10.1039/C9MD00337A)

T. Tomašić, L. Peterlin Masic, Curr. Top. Med. Chem. 14 (2014) 130 (https://doi.org/10.2174/1568026613666131113153251)

J. H. Xu, Y. L. Fan, J. Zhou, J. Heterocycl. Chem. 55 (2018) 1854 (https://doi.org/10.1002/jhet.3234)

Chemical Computing Group, M. O. E. Molecular Operating Environment. Chemical Computing Group, Montreal, 2008

BioSolveIT-SeeSAR (https://www.biosolveit.de/SeeSAR).

Most read articles by the same author(s)