Recovery of copper from printed circuit boards (PCBs) using shaking table Scientific paper

Main Article Content

Assoc. Prof. Dr. Özge Gök
https://orcid.org/0000-0002-0095-8206
Assoc. Prof. Dr. Gül Akar Şen
https://orcid.org/0000-0002-9277-3961

Abstract

In recent years, there has been a growing focus on the reuse of met­al­lic components from waste electrical and electronic equipment (WEEE) which refers to electrical and electronic equipment that has become obsolete, stopped working, or developed defects during production. In this research, shaking table was selected as a gravity concentration tool for the recovery of copper from the light components. The flowsheet included comminution, gravimetric concentration and physical/chemical characterization of feed material and pro­ducts. The process parameters were deck angle (degrees), motion frequency (Hz), wash water rate (L/m) and particle size diameter. The Box Behnken Des­ign (BBD) was used to optimize the performance of the wet shaking table and to identify the ideal combination of its operating parameters. By analysing the experimental design, it was found that the optimal settings for deck angle, mot­ion frequency, wash water rate and particle size diameter were 2°, 50 Hz, 12 L/m, and –500+300 mm, respectively. These optimal settings were located near the central points of the experimental design, suggesting that the actual optimal point could be within the designed space.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Özge Gök and G. Akar Şen, “Recovery of copper from printed circuit boards (PCBs) using shaking table: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 10, pp. 1039–1053, Oct. 2023.
Section
Metallic Materials and Metallurgy
Author Biography

Assoc. Prof. Dr. Gül Akar Şen, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Türkiye

Mining Eng. Dept.

References

M. Sarvar, M. M. Salarirad, M. A. Shabani, Waste Manage. 45 (2015) 246 (https://doi.org/10.1016/j.wasman.2015.06.020)

W. Zhang, J. Ren, S. Liu, Z. Yuan, Proc. Environ. Sci. 31 (2016) 171 (https://doi.org/10.1016/j.proenv.2016.02.023)

P. M. S. Sousa, L. M. Martelo, A. T. Marques, M. M. S. M Bastos, H. M. V. M. Soares, Chem. Eng. J. 434 (2022)134 (https://doi.org/10.1016/j.cej.2022.134604)

Y. Zhao, X. Wen, B. Li, D. Tao, Min. Metall.Proc. 21 (2004) 99 (https://doi.org/10.1007/bf03403310)

J. Li, Z. Xu, Y. Zhou, J. Electrostatics 65 (2007) 233 (https://doi.org/10.1016/j.elstat.2006.08.004)

C. Duan, X. Wen, C. Shi, Y. Zhao, B. Wen, Y. He, J. Hazard. Mater. 166 (2009) 4780 (https://doi.org/10.1016/j.jhazmat.2008.11.060)

M. R. Bilesan, I. Makarava, B. Wickman, E. Repo, J.Cleaner Prod. 286 (2021) 125505 (https://doi.org/10.1016/j.jclepro.2020.125505)

T. Fujita, H. Ono, G. Dodbiba, K Yamaguchi, Waste Manage. 34 (2014) 1264 (https://doi.org/10.1016/j.wasman.2014.03.002)

W. Chen, Y. Chen, Y. Shu, Y. He, J. Wei, J. Cleaner Prod. 313 (2021) 127881 (https://doi.org/10.1016/j.jclepro.2021.127881)

E. Y. Yazici, H. Deveci, Int. J. Min. Proc. 134 (2015) 89 (https://doi.org/10.1016/j.minpro.2014.10.012)

I. Birloaga, F. Vegliò, J. Environ. Chem. Eng. 4 (2016) 20 (https://doi.org/10.1016/j.jece.2015.11.021)

C. Cocchiara, S. Dorneanu, R Inguanta, C. Sunseri, P. Ilea, J. Cleaner Prod. 230 (2019) 170 (https://doi.org/10.1016/j.jclepro.2019.05.112)

D. Bourgeois, V. Lacanau, R. Mastretta, C. Contino-Pépin, D. Meyer, Hydrometallurgy 191 (2020) 105241 (https://doi.org/10.1016/j.hydromet.2019.105241)

S. Choubey, P. Goswami, S. Gautam, Mater. Today Proc. 42 (2021) 2656 (https://doi.org/10.1016/j.matpr.2020.12.596)

D. Franke, T. Suponik, P.M. Nuckowski, K. Golombek, K. Hyra, Manage. Syst. Prod. Eng. 28 (2020) 213 (https://doi.org/10.2478/mspe-2020-0031)

A. Akcil, C. Erust, C. S. Gahan, M Ozgun, .M. Sahin, A. Tuncuk, Waste Manage. 45 (2015) 258 (https://doi.org/10.1016/j.wasman.2015.01.017)

P. Hadi, M. Xu, C. S. K Lin, C. Hui, G. McKay, J. Hazard. Mater. 28 (2015) 234 (https://doi.org/10.1016/j.jhazmat.2014.09.032)

H. M. Veit, A. M. Bernardes, J. Z. Ferreira, J. A. S Tenório,. C. de Fraga Malfatti, J. Hazard. Mater. 137 (2006) 1704 (https://doi.org/10.1016/j.jhazmat.2006.05.010)

M. Kaya, Electronic waste and printed circuit board recycling technologies, Springer International Publishing, Berlin, 2019 (ISBN: 9783030265939)

X. Zeng, L. Zheng, H. Xie, B. Lu, K. Xia, K. Chao, W. Li, J. Yang, S. Lin, and J. Li, Proc. Environ. Sci. 16 (2012) 590 (https://doi.org/10.1016/j.proenv.2012.10.081)

M. Somasundaram, R. Saravanathamizhan, C. Ahmed Basha, V. Nandakumar, S. Nathira Begum, and T. Kannadasan. Powder Technol. 266 (2014) 1 (https://doi.org/10.1016/j.powtec.2014.06.006)

A. Das, A. Vidyadhar, S.P. Mehrotra, Conserv. Recycl. 53 (2009) 464 (https://doi.org/10.1016/j.resconrec.2009.03.008)

G. Chao, W. Hui, L. Wei, F. Jiangang, Y. Xin, Waste Manage. 31 (2011) 2161 (https://doi.org/10.1016/j.wasman.2011.05.011)

J. Hanafi, E. Jobiliong, A. Christiani, D.C. Soenarta, Kurniawan, J., Irawan, J. Soc. Behav. Sci. 57 (2012) 331 (https://doi.org/10.1016/j.sbspro.2012.09.1194)

F. Ma, Y. Tao, Xian, Y, Metall. Exploration 38 (2021) 117 (https://doi.org/10.1007/s42461-020-00234-5)

F. Burat, M. Özer, Physicochem. Prob. Min. Proc. 54 (2018) 554 (https://doi.org/10.5277/ppmp1858)

E. Ventura, A. Futuro, S. C. Pinho, M. F Almeida. J. M. Dias, J. Environ. Manage. 223 (2018) 297 (https://doi.org/10.1016/j.jenvman.2018.06.019)

M. M. H. Al-Tigani, A. Awdekarim, A. A.Abdueldaem, A. A. S. Seifelnasr,. Int. J. Acad. Multidiscip. Res. (IJAMR) 4 (2020) 63 (https://www.researchgate.net/publication/342052572_Application_of_Response_Surface_Methodology_on_Beneficiation_of_Sudanese_Chromite_Ore_via_Pilot_Plant_Shaking_Table_Separator/link/5ee06f26299bf1d20bdebebf/download)

S. K. Tripathy, Y. R. Murthy, Powder Technol. 221 (2012) 387 (https://doi.org/10.1016/j.powtec.2012.01.035)

N. Aslan, Powder Technol. 174 (2007) 127 (https://doi.org/10.1016/j.powtec.2007.01.007)

G. Akar, Minerals 6 (2016) 5 (https://doi.org/10.3390/min6010005)

B. A. Wills, J. A. Finch, Wills’ Mineral Processing Technology, 8th ed., Butterworth-Heinemann, Oxford, 2016 (ISBN: 9780080970547)

Q. Dehaine, L. O. Filippov, R. Joussemet, Min. Eng. 100 (2017) 200 (https://doi.org/10.1016/j.mineng.2016.10.018)

Recyclinginside, https://recyclinginside.com/recycling-technology/separation-and-sorting-technology/what-is-the-shaking-table visited 24 September 2022

http://en.wikipedia.org/wiki/Box%E2%80%93Behnken_design visited 24 October 2022

B. Ait-Amir, P. Pougnet, A. El-Hami, Embedded Mechatronic Systems 2, 2nd ed., ScienceDirect, Elsevier, Amsterdam, 2020 (ISBN: 9781785481901)

S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P. Silvaa, L. A. Portugal, P. S. dos Reis, A. S. Souzaa, W. N. L. dos Santos, Anal. Chim. Acta 597 (2007) 179 (https://doi.org/10.1016/j.aca.2007.07.011)

T. J. Robinson, Box-Behnken Designs, John Wiley & Sons, Ltd., Chichester, 2014 (https://doi.org./10.1002/9781118445112.stat04101)

M. Alhajabdalla, H. Mahmoud, M. S. Nasser, I. A. Hussein, R. Ahmed, H. Karami,. ACS Omega 6 (2021) 2513 (https://doi.org/10.1021/acsomega.0c04272)

S. Ahmed, The Open Educator, https://www.theopeneducator.com/doe/Response-Surface-Methodology/Box-Behnken-Response-Surface-Methodology visited 10 January 2023.