Recovery of copper from printed circuit boards (PCBs) using shaking table Scientific paper
Main Article Content
Abstract
In recent years, there has been a growing focus on the reuse of metallic components from waste electrical and electronic equipment (WEEE) which refers to electrical and electronic equipment that has become obsolete, stopped working, or developed defects during production. In this research, shaking table was selected as a gravity concentration tool for the recovery of copper from the light components. The flowsheet included comminution, gravimetric concentration and physical/chemical characterization of feed material and products. The process parameters were deck angle (degrees), motion frequency (Hz), wash water rate (L/m) and particle size diameter. The Box Behnken Design (BBD) was used to optimize the performance of the wet shaking table and to identify the ideal combination of its operating parameters. By analysing the experimental design, it was found that the optimal settings for deck angle, motion frequency, wash water rate and particle size diameter were 2°, 50 Hz, 12 L/m, and –500+300 mm, respectively. These optimal settings were located near the central points of the experimental design, suggesting that the actual optimal point could be within the designed space.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Sarvar, M. M. Salarirad, M. A. Shabani, Waste Manage. 45 (2015) 246 (https://doi.org/10.1016/j.wasman.2015.06.020)
W. Zhang, J. Ren, S. Liu, Z. Yuan, Proc. Environ. Sci. 31 (2016) 171 (https://doi.org/10.1016/j.proenv.2016.02.023)
P. M. S. Sousa, L. M. Martelo, A. T. Marques, M. M. S. M Bastos, H. M. V. M. Soares, Chem. Eng. J. 434 (2022)134 (https://doi.org/10.1016/j.cej.2022.134604)
Y. Zhao, X. Wen, B. Li, D. Tao, Min. Metall.Proc. 21 (2004) 99 (https://doi.org/10.1007/bf03403310)
J. Li, Z. Xu, Y. Zhou, J. Electrostatics 65 (2007) 233 (https://doi.org/10.1016/j.elstat.2006.08.004)
C. Duan, X. Wen, C. Shi, Y. Zhao, B. Wen, Y. He, J. Hazard. Mater. 166 (2009) 4780 (https://doi.org/10.1016/j.jhazmat.2008.11.060)
M. R. Bilesan, I. Makarava, B. Wickman, E. Repo, J.Cleaner Prod. 286 (2021) 125505 (https://doi.org/10.1016/j.jclepro.2020.125505)
T. Fujita, H. Ono, G. Dodbiba, K Yamaguchi, Waste Manage. 34 (2014) 1264 (https://doi.org/10.1016/j.wasman.2014.03.002)
W. Chen, Y. Chen, Y. Shu, Y. He, J. Wei, J. Cleaner Prod. 313 (2021) 127881 (https://doi.org/10.1016/j.jclepro.2021.127881)
E. Y. Yazici, H. Deveci, Int. J. Min. Proc. 134 (2015) 89 (https://doi.org/10.1016/j.minpro.2014.10.012)
I. Birloaga, F. Vegliò, J. Environ. Chem. Eng. 4 (2016) 20 (https://doi.org/10.1016/j.jece.2015.11.021)
C. Cocchiara, S. Dorneanu, R Inguanta, C. Sunseri, P. Ilea, J. Cleaner Prod. 230 (2019) 170 (https://doi.org/10.1016/j.jclepro.2019.05.112)
D. Bourgeois, V. Lacanau, R. Mastretta, C. Contino-Pépin, D. Meyer, Hydrometallurgy 191 (2020) 105241 (https://doi.org/10.1016/j.hydromet.2019.105241)
S. Choubey, P. Goswami, S. Gautam, Mater. Today Proc. 42 (2021) 2656 (https://doi.org/10.1016/j.matpr.2020.12.596)
D. Franke, T. Suponik, P.M. Nuckowski, K. Golombek, K. Hyra, Manage. Syst. Prod. Eng. 28 (2020) 213 (https://doi.org/10.2478/mspe-2020-0031)
A. Akcil, C. Erust, C. S. Gahan, M Ozgun, .M. Sahin, A. Tuncuk, Waste Manage. 45 (2015) 258 (https://doi.org/10.1016/j.wasman.2015.01.017)
P. Hadi, M. Xu, C. S. K Lin, C. Hui, G. McKay, J. Hazard. Mater. 28 (2015) 234 (https://doi.org/10.1016/j.jhazmat.2014.09.032)
H. M. Veit, A. M. Bernardes, J. Z. Ferreira, J. A. S Tenório,. C. de Fraga Malfatti, J. Hazard. Mater. 137 (2006) 1704 (https://doi.org/10.1016/j.jhazmat.2006.05.010)
M. Kaya, Electronic waste and printed circuit board recycling technologies, Springer International Publishing, Berlin, 2019 (ISBN: 9783030265939)
X. Zeng, L. Zheng, H. Xie, B. Lu, K. Xia, K. Chao, W. Li, J. Yang, S. Lin, and J. Li, Proc. Environ. Sci. 16 (2012) 590 (https://doi.org/10.1016/j.proenv.2012.10.081)
M. Somasundaram, R. Saravanathamizhan, C. Ahmed Basha, V. Nandakumar, S. Nathira Begum, and T. Kannadasan. Powder Technol. 266 (2014) 1 (https://doi.org/10.1016/j.powtec.2014.06.006)
A. Das, A. Vidyadhar, S.P. Mehrotra, Conserv. Recycl. 53 (2009) 464 (https://doi.org/10.1016/j.resconrec.2009.03.008)
G. Chao, W. Hui, L. Wei, F. Jiangang, Y. Xin, Waste Manage. 31 (2011) 2161 (https://doi.org/10.1016/j.wasman.2011.05.011)
J. Hanafi, E. Jobiliong, A. Christiani, D.C. Soenarta, Kurniawan, J., Irawan, J. Soc. Behav. Sci. 57 (2012) 331 (https://doi.org/10.1016/j.sbspro.2012.09.1194)
F. Ma, Y. Tao, Xian, Y, Metall. Exploration 38 (2021) 117 (https://doi.org/10.1007/s42461-020-00234-5)
F. Burat, M. Özer, Physicochem. Prob. Min. Proc. 54 (2018) 554 (https://doi.org/10.5277/ppmp1858)
E. Ventura, A. Futuro, S. C. Pinho, M. F Almeida. J. M. Dias, J. Environ. Manage. 223 (2018) 297 (https://doi.org/10.1016/j.jenvman.2018.06.019)
M. M. H. Al-Tigani, A. Awdekarim, A. A.Abdueldaem, A. A. S. Seifelnasr,. Int. J. Acad. Multidiscip. Res. (IJAMR) 4 (2020) 63 (https://www.researchgate.net/publication/342052572_Application_of_Response_Surface_Methodology_on_Beneficiation_of_Sudanese_Chromite_Ore_via_Pilot_Plant_Shaking_Table_Separator/link/5ee06f26299bf1d20bdebebf/download)
S. K. Tripathy, Y. R. Murthy, Powder Technol. 221 (2012) 387 (https://doi.org/10.1016/j.powtec.2012.01.035)
N. Aslan, Powder Technol. 174 (2007) 127 (https://doi.org/10.1016/j.powtec.2007.01.007)
G. Akar, Minerals 6 (2016) 5 (https://doi.org/10.3390/min6010005)
B. A. Wills, J. A. Finch, Wills’ Mineral Processing Technology, 8th ed., Butterworth-Heinemann, Oxford, 2016 (ISBN: 9780080970547)
Q. Dehaine, L. O. Filippov, R. Joussemet, Min. Eng. 100 (2017) 200 (https://doi.org/10.1016/j.mineng.2016.10.018)
Recyclinginside, https://recyclinginside.com/recycling-technology/separation-and-sorting-technology/what-is-the-shaking-table visited 24 September 2022
http://en.wikipedia.org/wiki/Box%E2%80%93Behnken_design visited 24 October 2022
B. Ait-Amir, P. Pougnet, A. El-Hami, Embedded Mechatronic Systems 2, 2nd ed., ScienceDirect, Elsevier, Amsterdam, 2020 (ISBN: 9781785481901)
S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P. Silvaa, L. A. Portugal, P. S. dos Reis, A. S. Souzaa, W. N. L. dos Santos, Anal. Chim. Acta 597 (2007) 179 (https://doi.org/10.1016/j.aca.2007.07.011)
T. J. Robinson, Box-Behnken Designs, John Wiley & Sons, Ltd., Chichester, 2014 (https://doi.org./10.1002/9781118445112.stat04101)
M. Alhajabdalla, H. Mahmoud, M. S. Nasser, I. A. Hussein, R. Ahmed, H. Karami,. ACS Omega 6 (2021) 2513 (https://doi.org/10.1021/acsomega.0c04272)
S. Ahmed, The Open Educator, https://www.theopeneducator.com/doe/Response-Surface-Methodology/Box-Behnken-Response-Surface-Methodology visited 10 January 2023.