Inhibition study of curcumin extract’s effect on dissimilar aluminium joint Scientific paper

Main Article Content

Kamatchi Pravinkumar
https://orcid.org/0000-0002-7788-0777
Vaddi Seshagiri Rao
https://orcid.org/0000-0002-2972-1464
Rengarajan Sathish
https://orcid.org/0000-0001-6971-0412

Abstract

Aluminium welded joints are offering greater interest to researchers owing to the replacement of heavy steel structures and reduction in the weight of the components used in the automobile and marine environments. In this study AA6061 and AA8011 have been welded by using the bobbin tool friction stir welding method and by varying the process parameters with the samples being subjected to corrosion environments. The corrosive nature of the welded alloys in the absence and presence of inhibitors (curcumin) has been examined by electrochemical methods and compared with raw samples. The ratio has been observed between 0.075 and 5.42 A cm-2. The results reveal that corros­ion control tendency has been improved by the AA6061 and AA8011 alum­in­ium alloy joint in the presence of curcumin extract.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
K. Pravinkumar, V. S. . Rao, and R. Sathish, “Inhibition study of curcumin extract’s effect on dissimilar aluminium joint: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 2, pp. 245–258, Mar. 2024.
Section
Metallic Materials and Metallurgy

References

A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Mater. Sci. Eng., A 280 (2000) 102 (https://doi.org/10.1016/s0921-5093(99)00674-7)

T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862 (https://doi.org/10.1016/j.matdes.2013.12.002)

J. Hirsch, Trans. Nonferrous Met. Soc. China 24 (2014) 1995 (https://doi.org/10.1016/S1003-6326(14)63305-7)

C.H. Ng, S. N. M. Yahaya, A. A. A. Majid, Acad. J. Sci. Res. 5 (2017) 708 (https://academiapublishing.org/journals/ajsr/pdf/2017/Dec/Ng%20et%20al.pdf)

T. Trzepiecinski, Metals 10 (2020) 779 (https://doi.org/10.3390/met10060779)

D. Feron, Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater, Europ. Fed. Corros. Ser., 2007, pp. 145–155 (eBook ISBN: 9781845693084)

T. Watanabe, H. Takayama, A. Yanagisawa, J. Mater. Process. Technol. 178 (2006) 342 (https://doi.org/10.1016/j.jmatprotec.2006.04.117)

M. Khafri, J. Mater. Sci. 39 (2004) 6467 (https://doi.org/10.1023/B:JMSC.0000044884.25589.9b)

M. Esmaily, N. Mortazavi, W. Osikowicz, Mater. Des. 108 (2016) 114 (https://doi.org/10.1016/j.matdes.2016.06.089)

W. Y. Li, T. Fu, L. Hutsch, J. Hilgert, F. F. Wang, J. F. Dos Santos, N. Huber, Mater. Des. 64 (2014) 714 (https://doi.org/10.1016/j.matdes.2014.07.023)

K. Xhanari, M. Finsgar, Int. J. Electrochem. Sci. 12 (2017) 5845 (https://doi.org/10.20964/2017.07.71)

J.C. Swearengen, Mater. Sci. Eng. 10 (1972) 103 (https://doi.org/10.1016/0025-5416(72)90074-2)

J. Fayomi, A.P.I. Popoola, O.M. Popoola, O.S.I. Fayomi, J. Alloys Compd. 850 (2021) 1 (https://doi.org/10.1016/j.jallcom.2020.156679)

C. Shujin, Li. Hao, Lu. Sheng, Ni. Ruiyang, D. Jianghui, Int. J. Adv. Manuf. Technol. 86 (2016) 337 (https://doi.org/10.1007/s00170-015-8116-9)

D. Ji-Hong, G. Chong, L. Yao, H. Jain, J. Xiang-Dong, Z. Zhi-Xiong, Int. J. Min. Met. Mater. 24 (2017) 171 (https://doi.org/10.1007/s12613-017-1392-7)

R. Rosliza, W.B. Wan Nik, H.B. Senin, Mater. Chem. Phys. 107 (2008) 281 (https://doi.org/10.1016/j.matchemphys.2007.07.013)

M. K. Abbass, K. S. Hassan, A. S. Alwan, Int. J. Manuf. Mater. Mech. Eng. 3 (2015) 31 (https://doi.org/10.7763/IJMMM.2015.V3.161)

N. Sunitha, K.G. Manjunatha, S. Khan, M. Sravanthi, SN Appl. Sci. 1 (2019) 1024 (https://doi.org/10.1007/s42452-019-1063-6)

M. Mardalizadeh, M. Khandaei, M. Safarkhanian, J. Adhes. Sci. Technol. 35 (2020) 1 (https://doi.org/10.1080/01694243.2020.1792156)

M. K. Sued, D. Pons, J. Lavroff, E. H. Wong, Mater. Des. 54 (2014) 632 (https://doi.org/10.1016/j.matdes.2013.08.057)

M. M. Z. Ahmed, M. I. A. Habba, M. M. El-Sayed Seleman, K. Hajlaoui, S. Ataya, F. H. Latief, A. E. El-Nikhaily, Materials 14 (2021) 4585 (https://doi.org/10.3390/ma14164585)

W. Y. Li, T. Fu, L. Hutsch, J. Hilgert, F. F. Wang, J. F. Dos Santos, N. Huber, Mater. Des. 64 (2014) 714 (https://doi.org/10.1016/j.matdes.2014.07.023)

Y. Li, D. Sun, W. Gong, Metals 9 (2019) 894 (https://doi.org/10.3390/met9080894)

S. Sinhmar, D. K. Dwivedi, Corros. Sci. 133 (2018) 25 (https://doi.org/10.1016/j.corsci.2018.01.012)

F. Gharavi, K. A. Matori, R. Yunus, N. K. Othman, Mater. Res. 17 (2014) 672 (https://doi.org/10.1590/S1516-14392014005000053)

X. G. Zhang, Corrosion and Electrochemistry of Zinc, 1st ed., Springer, New York, 1996, pp. 125–156 (https://doi.org/10.1007/978-1-4757-9877-7_5)

S. B. Strbac, R. R. Adzic, in Encyclopedia of Applied Electrochemistry , G. Kreysa, K. Ota, R. F. Savinell, Eds., Springer, Berlin, 2014, p. 417 (https://doi.org/10.1007/978-1-4419-6996-5_485)

H. Elmsellem, M. H. Youssouf, A. Aouniti, T. Ben Hadda, A. Chetouani, B. Hammouti, Russ. J. Appl. Chem. 87 (2014) 744 (https://doi.org/10.1134/s1070427214060147)

L. Juhaiman, Green Sustain. Chem. 6 (2016) 57 (https://doi.org/10.4236/gsc.2016.62005)

E. A. Flores-Frias, V. Barba, R. Lopez-Sesenes, L. L. Landeros-Martinez, J. P. Flores-De Los Rios, M. Casales, J. G. Gonzalez-Rodriguez, Int. J. Electrochem. Sci. 14 (2019) 5026 (https://doi.org/10.20964/2019.06.53)

Y. Yan, Metal. Biomed. Devices. 1 (2010) 178 (https://doi.org/10.1533/9781845699246.2.178)

Y. Yan, A. Neville, and D. Dowson, J. Phys., D 39 (2006) 3200 (https://doi.org/10.1088/0022-3727/39/15/S10)

J. G. Speight, P. J. Subsea, Deepwater Oil and Gas Science and Technology, 1st ed., Gulf Professional, Oxford, 2012, p. 213 (https://doi.org/10.1016/B978-1-85617-558-6.00008-8)

F. Gharavi, K. Matori, R. Yunus, N. Othman, F. Fadaeifard, J. Mater. Res. Technol. 4 (2015) 314 (https://doi.org/10.1016/j.jmrt.2015.01.007)

R. Rosliza, W. B. Wan Nik, Curr. Appl. Phys. 10 (2010) 221 (https://doi.org/10.1016/j.cap.2009.05.027)

J. M. G. De Salazar, A. Urena, S. Manzanedo, M. I. Barrena, Corr. Sci. 41 (1998) 529 (https://doi.org/10.1016/s0010-938x(98)00135-8)

S. T. Selvamani, J. Mater. Res. Technol. 15 (2021) 315 (https://doi.org/10.1016/j.jmrt.2021.08.005)

K. Hornbostel, C. K. Larsen, M. R. Geiker, Cement Concrete Composites 39 (2013) 60 (https://doi.org/10.1016/j.cemconcomp.2013.03.019)

B. T. Ogunsemi, T. E. Abioye, T. I. Ogedengbe, H. Zuhailawati, J. Mater. Res. Technol. 11 (2021) 1061 (https://doi.org/10.1016/j.jmrt.2021.01.070).