Synthesis, сharacterization, and сatalytic properties of GdCoO3 for dry reforming of methane Scientific paper

Main Article Content

Regina Allabergenova
https://orcid.org/0000-0003-1998-4399
Darya Bobkova
https://orcid.org/0009-0005-0274-1480
Elizaveta Borodina
https://orcid.org/0000-0001-8934-6347
Tatiana Kryuchkova
https://orcid.org/0000-0001-6810-9756
Ekaterina Markova
https://orcid.org/0000-0003-2735-2893
Tatyana Sheshko
https://orcid.org/0000-0003-4176-4085
Nikolai Lobanov
https://orcid.org/0000-0002-1954-2809
Alexander Cherednichenko
https://orcid.org/0000-0002-4709-5313

Abstract

Perovskite oxides (ABO3) due to their high thermal stability and the ability to control the physico-chemical properties are considered as an alter­native to traditional catalysts containing noble and transition metals. Herein, the recent research breakthroughs of GdCoO3 catalysts in experimental studies are summarized in detail. First, the perovskite-type GdCoO3 complex oxides were obtained by co-precipitation method with the various precipitators and were characterized by X-ray diffraction (XRD), low temperature nitrogen ads­orption and IR spectroscopy. Physical and chemical analysis showed that the choice of precipitant doesn’t significantly affect the phase composition of the perovskites. The catalytic performance of gadolinium cobaltites was discussed. It was found that the use of cobaltites obtained by co-precipitation leads to the inhibition of the side reaction of the reverse steam reforming of carbon mono­xide. Finally, the investigation of the used catalysts demonstrated the formation of Gd2O2CO3 and metallic cobalt, which indicates the nature of active centres: gadolinium is the centre of CO adsorption, while hydrogen chemisorption occurs on cobalt-sites.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Allabergenova, “Synthesis, сharacterization, and сatalytic properties of GdCoO3 for dry reforming of methane: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 51–61, Feb. 2024.
Section
Physical Chemistry

Funding data

References

S. V. Razmanova, I. A. Machula, Oil Gas Geol. Theory Practice 10 (2015) 37 (https://doi.org/10.17353/2070-5379/38_2015)

G. R. S. Santos, О. M. Basha, R. Wang, H. Ashkanani, B. Morsi, Catal. Today 371 (2021) 93 (http://dx.doi.org/10.1016/j.cattod.2020.07.012)

M. M. Nair, S. Kaliaguine, New J. Chem. 40 (2016) 4049 (http://dx.doi.org/10.1039/C5NJ03268G)

W. Y. Kim, J. S. Jang, E. C. Ra, K. Y. Kim, E. H. Kim, J. S. Lee, Appl. Catal., A 575 (2019) 198 (https://doi.org/10.1016/j.apcata.2019.02.029)

K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, Int. J. Hydrogen Energy 37 (2012) 11195 (https://doi.org/10.1016/j.ijhydene.2012.04.059)

E. le Saché, L. Pastor-Pérez, V. Garcilaso, D. J. Watson, M. A. Centeno, J. A. Odriozola, T. R. Reina, Catal. Today 357 (2020) 583 (https://doi.org/10.1016/j.cattod.2019.05.039)

R. Pereniguez, V. M. Gonzalez-delaCruz, A. Caballero, J. P. Holgado, Appl Catal., B 123–124 (2012) 346 (https://doi.org/10.1016/j.apcatb.2012.04.044)

S. Bhattar, M. A. Abedin, S. Kanitkar, J. J. Spivey, Catal. Today 365 (2021) 2 (https://doi.org/10.1016/j.cattod.2020.10.041)

V. V. Kost, T. A. Kryuchkova, V. D. Zimina, T. F. Sheshko, A. G. Cherednichenko, V. V. Kurilkin, M. G. Safronenko, L. V. Yafarova, Bulg. Chem. Commun. 51 (2019) 138 (http://www.bcc.bas.bg/BCC_Volumes/Volume_51_Special_D_2019/BCC-51-D-2019-138-142-Kost-29.pdf)

T. A.Kryuchkova, T. F.Sheshko, V. D. Zimina, V. V. Kurilkin, Y. M.Serov, I. A. Zvereva, L. V. Yafarova, in Proceedings of 9th International Conference on Nanomaterials - Research & Application (2018). TANGER Ltd.. Ostrava, Czech Republic, p. 327

C. Shi, S. Wang, X. Ge, S. Deng, B. Chen, J. Shen, J. CO2 Util. 46 (2021) 101462 (https://doi.org/10.1016/j.jcou.2021.101462)

E. V. Dokuchits, A. N. Tafilevich, N. V. Shtertser, T. P.Minyukova, J. Sib. Fed. Univ.: Chem. 12 (2019) 177 (http://dx.doi.org/10.17516/1998-2836-0117)

M. Mousavi and A. N. Pour, New J. Chem. 43 (2019) 10763 http://dx.doi.org/10.1039/C9NJ01805K

J. M. Lavoie. Front. Chem. 2 (2014) 1 (http://dx.doi.org/10.3389/fchem.2014.00081)

M. K. Nikoo, N. A. S. Amin, Fuel Process. Technol. 92 (2011) 678 (http://dx.doi.org/10.1016/j.fuproc.2010.11.027)

S. V. Kurgan, G. S. Petrov, L. A. Bashkirov, A. I. Klyndyuk, Inorg. Mater. 40 (2004) 1224 (http://dx.doi.org/10.1023/B:INMA.0000048227.83354.3c)

M. R. Goldwasser, M. E. Rivas, M. L. Lugo, E. Pietri, J. Pérez-Zurita, M. L. Cubeiro, A. Griboval-Constant, G. Leclercq, Catal. Today 107–108 (2005) 106 (http://dx.doi.org/10.1016/j.cattod.2005.07.073).