Investigation of the adsorption behaviors of thymol blue, crystal violet and rhodamine B on lichen-derived activated carbon Scientific paper
Main Article Content
Abstract
Since thymol blue (TB), crystal violet (CV) and rhodamine B (RB) are frequently used in various industries, they cause environmental pollution owing to the wastewater treatment process. The current study focused on the removal of TB, CV and RB from aqueous media with lichen-derived activated carbon (LDAC) and comparing their adsorption behavior. The maximum Langmuir adsorption capacity for TB, CV and RB was found to be 400, 213 and 345 mg g-1, respectively. The removal (%) of TB, CV and RB was found to be 86.38, 79.02 and 82.73 % at the same conditions, respectively. Experimental data were interpreted with some commonly used kinetic and isotherm models. Calculated activation energies, D-R model energies, enthalpy changes and evaluation of FT-IR, XRD and SEM/EDX images taken before and after dye loading showed that the adsorption of TB, CV and RB on the LDAC are physical processes. The pseudo-second-order kinetic model better described the adsorption behavior of TB, CV and RB on the LDAC. The boundary layer thickness value for all the dyes studied increased with increasing initial dye concentration and temperature, and CV also had a larger boundary layer thickness value than that of TB and RB.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. Puri, G. Sumana, Appl. Clay Sci. 166 (2018) 102 (https://doi.org/10.1016/j.clay.2018.09.012)
M. Sh. Gohr, A. I. Abd-Elhamid, A. A. El-Shanshory, H. M. A. Soliman, J. Mol. Liq. 346 (2022) 118227 (https://doi.org/10.1016/j.molliq.2021.118227)
S. Kumar (S. Kumar), R. D. Kaushik, L. P. Purohit, J. Hazard. Mater. 424 (2022) 127332 (https://doi.org/10.1016/j.jhazmat.2021.127332)
P. Naderi, M. Shirani, A. Semnani, A. Goli, Ecotoxicol. Environ. Saf. 163 (2018) 372 (https://doi.org/10.1016/j.ecoenv.2018.07.091)
M. El Alouani, S. Alehyen, H. El Hadki, H. Saufi, A. Elhalil, O. K. Kabbaj, M. Taibi, Surfaces Interfaces 24 (2021) 101136 (https://doi.org/10.1016/j.surfin.2021.101136)
M. Sundararajan, V. Sailaja, L. John Kennedy, J. Judith Vijaya, Ceram. Int. 43 (2017) 540 (http://doi.org/10.1016/j.ceramint.2016.09.191)
A. S. Takabi, M. Shirani, A. Semnani, Environ. Technol. Innov. 24 (2021) 101947 (https://doi.org/10.1016/j.eti.2021.101947)
G. Sharma, A. Kumar, M. Naushad, A. García-Peñas, A. H. Al-Muhtaseb, A. A. Ghfar, V. Sharma, T. Ahamad, F. J. Stadler, Carbohydr. Polym. 202 (2018) 444 (https://doi.org/10.1016/j.carbpol.2018.09.004)
S. S. Chan, K. S. Khoo, K. W. Chew, T. C. Ling, P. L. Show, Bioresour. Technol. 344 (2022) 126159 (https://doi.org/10.1016/j.biortech.2021.126159)
S. Sathiyavimal, S. Vasantharaj, M. Shanmugavel, E. Manikandan, P. Nguyen-Tri, K. Brindhadevi, A. Pugazhendhi, Prog. Org. Coatings 148 (2020) 105890 (https://doi.org/10.1016/j.porgcoat.2020.105890)
P. V. Nidheesh, R. Gandhimathi, Desalination 299 (2012) 1 (https://doi.org/10.1016/j.desal.2012.05.011)
A. Muniyasamy, G. Sivaporul, A. Gopinath, R. Lakshmanan, A. Altaee, A. Achary, P. Velayudhaperumal Chellam, J. Environ. Manage. 265 (2020) 110397 (https://doi.org/10.1016/j.jenvman.2020.110397)
S. Ledakowicz, R. Żyłła, K. Paździor, J. Wrębiak, J. Sójka-Ledakowicz, Ozone Sci. Eng. 39 (2017) 357 (https://doi.org/10.1080/01919512.2017.1321980)
H. R. Rashidi, N. M. N. Sulaiman, N. A. Hashim, C. R. C. Hassan, M. R. Ramli, Desalin. Water Treat. 55 (2015) 86 (https://doi.org/10.1080/19443994.2014.912964)
D. A. Gopakumar, V. Arumukhan, R. V. Gelamo, D. Pasquini, L. C. de Morais, S. Rizal, D. Hermawan, A. Nzihou, H. P. . A. Khalil, Nano-Structures Nano-Objects 18 (2019) 100268 (https://doi.org/10.1016/j.nanoso.2019.100268)
M. R. Gadekar, M. M. Ahammed, Desalin. Water Treat. 57 (2016) 26392 (https://doi.org/10.1080/19443994.2016.1165150)
H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A. A. Addi, R. A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri, J. Duplay, A. Jada, M. Hamdani, J. Water Process Eng. 28 (2019) 214 (https://doi.org/10.1016/j.jwpe.2019.02.006)
S. M. Ghoreishi, R. Haghighi, Chem. Eng. J. 95 (2003) 163 (https://doi.org/10.1016/S1385-8947(03)00100-1)
H. Koyuncu, A. R. Kul, Surfaces Interfaces 19 (2020) 100527 (https://doi.org/10.1016/j.surfin.2020.100527)
H. Koyuncu, A. R. Kul, Surfaces Interfaces 21 (2020) 100653 (https://doi.org/10.1016/j.surfin.2020.100653)
E. M. Bakhsh, M. Bilal, M. Ali, J. Ali, A. Wahab, K. Akhtar, T. M. Fagieh, E. Y. Danish, A. M. Asiri, S. B. Khan, Materials (Basel) 15 (2022) 1986 (https://doi.org/10.3390/ma15061986)
S. Senthilkumaar, P. Kalaamani, C. Subburaam, J. Hazard. Mater. 136 (2006) 800 (https://doi.org/10.1016/j.jhazmat.2006.01.045)
Z. Wang, D. Shen, F. Shen, C. Wu, S. Gu, Int. Biodeterior. Biodegrad. 120 (2017) 104 (https://doi.org/10.1016/j.ibiod.2017.01.026)
A. I. Onen, O. N. Maitera,J. Joseph,J. E. E. Ebenso, Int. J. Electrochem. Sci. 6 (2011) 2884 (http://www.electrochemsci.org/papers/vol6/6072884.pdf)
N. Laskar, U. Kumar, KSCE J. Civil Eng. 22 (2018) 2755 (https://doi.org/10.1007/s12205-017-0473-5)
L. Z. Lee, M. A. Ahmad Zaini, Toxin Rev. 41 (2022) 64 (https://doi.org/10.1080/15569543.2020.1837172)
M. Kumari, G. R. Chaudhary, S. Chaudhary, A. Umar, Chemosphere 294 (2022) 133692 (https://doi.org/10.1016/j.chemosphere.2022.133692)
W. Xiao, Z. N. Garba, S. Sun, I. Lawan, L. Wang, M. Lin, Z. Yuan, J. Clean. Prod. 253 (2020) 119989 (https://doi.org/10.1016/j.jclepro.2020.119989)
I.-H. T. Kuete, D. R. T. Tchuifon, G. N. Ndifor-Angwafor, A. T. Kamdem, S. G. Anagho, J. Encapsul. Adsorp. Sci. 10 (2020) 1 (https://doi.org/10.4236/jeas.2020.101001)
E. E. Jasper, V. O. Ajibola, J. C. Onwuka, Appl. Water Sci. 10 (2020) 132 (https://doi.org/10.1007/s13201-020-01218-y)
H.-O. Chahinez, O. Abdelkader, Y. Leila, H. N. Tran, Environ. Technol. Innov. 19 (2020) 100872 (https://doi.org/10.1016/j.eti.2020.100872)
M. Sulyman, J. Namieśnik, A. Gierak, Polish J. Environ. Stud. 23 (2014) 2223 (https://doi.org/10.15244/pjoes/26764)
Y. Hou, G. Huang, J. Li, Q. Yang, S. Huang, J. Cai, J. Anal. Appl. Pyrolysis 143 (2019) 104694 (https://doi.org/10.1016/j.jaap.2019.104694)
F. A. Adekola, S. B. Ayodele, A. A. Inyinbor, Chem. Data Collect. 19 (2019) 100170 (https://doi.org/10.1016/j.cdc.2018.11.012)
J. Wu, J. Yang, G. Huang, C. Xu, B. Lin, J. Clean. Prod. 251 (2020) 119717 (https://doi.org/10.1016/j.jclepro.2019.119717).