Multivariate statistical analysis approach to investigate the thermodynamic quantities of the benign alternative fuel Scientific paper
Main Article Content
Abstract
In order to extract meaningful interpretation from the large data and provide their value to the application areas, chemical data analysis has become a serious challenge in the development and applications of new protocols, technique and methodologies for the mathematical modelling communities and other data science societies. Therefore, in the present work a rapid and robust box-and-whisker plot and multivariate principal component statistical techniques (PCA) are being proposed for the evaluations of the thermodynamic molecular properties data of the benign fuel structures. We observed that, the box-and-whisker plot technique successfully explored all of the thermochemical molecular properties precisely, and described symmetrical distribution of the data along the median values with respect to the rise in temperature. Moreover, applying the PCA technique, the score-plots of PCs diagnosed the peculiar molecular properties variations after a certain peak of temperature with descendant variation in the statistical parameters. Furthermore, PCA parameters not only segregated the thermodynamic properties of propanol and butanol but also, their variations with the temperature. Thus, we concluded that, Box-whisker and PCA statistical techniques are robust and rapid method for the assessment and evaluation of the large molecular thermodynamic quantities data.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. G. Yu, Q. J. Xiang, M. H. Zhou, Appl. Catal., B 90 (2009) 595 (https://doi.org/10.1016/j.apcatb.2009.04.021)
A. A. Khan, M. Tahir, J. CO2 Util. 29 (2019) 205 (https://doi.org/10.1016/j.jcou.2018.12.008)
O. Doğan, Fuel 90 (2011) 2467 (https://doi.org/10.1016/j.fuel.2011.02.033)
H. F. Mustafa, S. Abdullah, M.Z. Abdullah, K. Sopian, A. K. Ismail, Renew. Energy 74 (2015) 505 (https://doi.org/10.1016/j.renene.2014.08.061)
N. Yilmaz, A. Atmanli, Energy 140 (2017) 1378 (https://doi.org/10.1016/j.energy.2017.07.077)
P. Durre, Curr. Opin. Biotechnol. 22 (2011) 331 (https://doi.org/10.1016/j.copbio.2011.04.010)
Y. Dahman, C. Dignan, A. Fiayaz, A. Chaudhry, in Biomass, Biopolymer-Based Materials, and Bioenergy, D. Verma, E. Forunati, S. Jain, X. Zhang, Eds., Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, Elsevier, New York, 2019, p. 241 (https://doi.org/10.1016/B978-0-08-102426-3.00013-8)
A. T. Balaban, HYLE 19 (2013) 107 (https://www.hyle.org/journal/issues/19-1/balaban.htm)
X. Wu, F. Kang, W. Duan, J. Li, Prog. Nat. Sci.: Mater. Int. 29 (2019) 247 (https://doi.org/10.1016/j.pnsc.2019.04.003)
K. E. Gutowski, R. D. Rogers, D. A. Dixon, J. Phys. Chem., B 111 (2007) 4788 (https://doi.org/10.1021/jp066420d)
A. Khan, P. A. M. Vazquez, R. M. T. Fernandes, Spectrochim. Acta, A 245 (2021) 118891 (https://doi.org/10.1016/j.saa.2020.118891)
E. Szymanska, Anal. Chim. Acta 1028 (2018) 1 (https://doi.org/10.1016/j.aca.2018.05.038)
A. M. Souza, R. Poppi, J. Quim. Nova 35 (2012) 223 (http://dx.doi.org/10.21577/0100-4042.20170480)
A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)
C. Adamo, B. V. Toward, J. Chem. Phys. 110 (1999) 6158 (https://doi.org/10.1063/1.478522)
T. H. Dunning, K. A. Peterson, D. W. Woon, P. V. R. Schleyer, “Encyclopedia of Computational Chemistry”, Wiley, New York. 1998, pp. 88–115
Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009
StatSoft Inc. (2004). Statistica (data analysis software system), version 7. Available from www.statsoft.com
W. J. Dixon, F. J. Massey, Jr., Introduction to statistical analysis, McGraw-Hill, New York, 1951
R. McGill, J. W. Tukey, W. A. Larsen, Am. Statistician 32 (1978) 12 (https://doi.org/10.2307/2683468)
E. Stromsoe, H. G. Ronne, A. L. Lydersen, J. Chem. Eng. Data 15 (1970) 286 (https://doi.org/10.1021/je60045a040)
J. Chao, K. R. Hall, K. N. Marsh, R. C. Wilhoit J. Phys. Chem. Ref. Data 15 (1986) 1369 (https://doi.org/10.1063/1.555769)
J. Chao, F. D. Rossini, J. Chem. Eng. Data 10 (1965) 374 (https://doi.org/10.1021/je60027a022)
Daniel Siderius, NIST Standard Reference Simulation Website - SRD 173 (2017) National Institute of Standards and Technology, (https://doi.org/10.18434/mds2-232) (Accessed 2023-10-04)
T. Chai1, R. R. Draxler, Geosci. Model Dev. Discuss. 7 (2014) 1525 (http://doi.org/10.5194/gmdd-7-1525-2014)
E. Nikolic-Doric, K. Cobanovic, Z. Lozanov-Crvenkovic, in Proceedings of International Conference on Teaching Statistics (2006) Slavador, Brasil, ICOT 7 Published By IASE, Belgium, 2006, C137 (ISBN: 978-90-73592-24-7)
A. R. Henderson, Clin. Chim. Acta 366 (2006) 112 (https://doi.org/10.1016/j.cca.2005.11.007)
C. E. Brown, in Applied Multivariate Statistics in Geohydrology and Related Sciences, C. E. Brown, Ed., Springer, Berlin, 1998, p. 155 (http://doi.org/10.1007/978-3-642-80328-4_13)
T. Jolliffe, in Principal Component Analysis, T. Jolliffe, Ed., Springer Series in Statistics, Springer, New York, 1986, p. 115 (https://doi.org/10.1007/978-1-4757-1904-8_7)
F. Mabood, G. Abbas, F. Jabeen, Z. Naureen, A. Al-Harrasi, A. M. Hamaed, J. Hussain, M. Al-Nabhani, M. S. Al-Shukaili, A. Khan, S. Manzoor, Food Addit. Contam., A 35 (2018) 404 (https://doi.org/10.1080/19440049.2017.1418090)
F. Mabood, S. A. Gilani, M. Albroumi, S. Alameri, M. M. O. Al-Nabhani, F. Jabeen, A. Alharrasi, R. Boqué, S. Farooq, A. Hamaed, A. Naureen, A. Khan, Z. Hussain, Fuel 197 (2017) 388 (https://doi.org/10.1016/j.fuel.2017.02.041)
A. D. McQuarrie, J. D. Simon, Physical Chemistry: A Molecular Approach, University Science Books, Melville, NY, 1997, p. 1396 (ISBN 978-0935702996).