[BMIm][PF6]/silicon oil/multi-walled carbon nanotubes paste electrode: Electrochemical properties and application for lead and cadmium ion determinations Scientific paper
Main Article Content
Abstract
The electroanalytical methods have been developed for wide application, especially for trace metal ions. In this study, the applicability of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) ionic liquid as a pasting binder to fabricate a multi-walled carbon nanotube paste electrode (MWCNT PE) for detecting Pb2+ and Cd2+ was evaluated. The electrochemical properties of electrodes were explored by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep anodic stripping voltammetry. The use of [BMIm][PF6] alone as a conductive binder resulted in an electrode that was unsatisfactory for electrochemical analysis. However, the MWCNT PE with the pasting mixture of silicon oil and [BMIm][PF6] displayed excellent sensitivity for the Pb2+ and Cd2+ determinations, with limits of detection of 2.25 and 1.59 mg L-1, respectively. The proposed electrode was demonstrated to be a reliable sensor for accurately quantifying trace amounts of Pb2+ and Cd2+, exhibiting good repeatability, reproducibility and stability.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, Interdiscip. Toxicol. 7 (2014) 60-72 (https://doi.org/10.2478/intox-2014-0009)
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Front. Pharmacol. 12 (2021) 227 (https://doi.org/10.3389/fphar.2021.643972)
X. Yang, J. Yan, F. Wang, J. Xu, X. Liu, K. Ma, X. Hu, J. Ye, J. Serb. Chem. Soc. 81 (2016) 697 (https://doi.org/10.2298/10.2298/JSC151124011Y)
M. E. Morales, R. S. Derbes, C. M. Ade, J. C. Ortego, J. Stark, P. L. Deininger, A. M. Roy-Engel, PloS One 11 (2016) e0151367 (https://doi.org/10.1371/journal.pone.0151367)
B. K. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, Biosens. Bioelectron. 94 (2017) 443 (https://doi.org/10.1016/j.bios.2017.03.031)
E. C. Okpara, O. E. Fayemi, O. B. Wojuola, D. C. Onwudiwe, E. E. Ebenso, RSC Adv. 12 (40) (2022) 26319 (https://doi.org/10.1039/D2RA02733J)
J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, J. Serb. Chem. Soc. 82 (2017) 73 (https://doi.org/10.2298/JSC160419090L)
O. A. Farghaly, R. A. Hameed, A.-A. H. Abu-Nawwas, Int. J. Electrochem. Sci. 9 (2014) 3287 (http://www.electrochemsci.org/papers/vol9/90603287.pdf).
J. M. Díaz-Cruz, N. Serrano, C. Pérez-Ràfols, C. Ariño, M. Esteban, J. Solid State Electrochem. 24 (2020) 2653 (http://doi.org/10.1007/s10008-020-04733-9)
C. Apetrei, I. M. Apetrei, J. A. D. Saja, M. L. Rodriguez-Mendez, Sensors 11 (2) (2011) 1328 (https://doi.org/10.3390/s110201328)
R. Rejithamol, S. Beena, Front. Sens. 3 (2022) 901628 (https://doi.org/10.3389/fsens.2022.901628)
A. J. Slate, D. A. Brownson, A. S. A. Dena, G. C. Smith, K. A. Whitehead, C. E. Banks, Phys. Chem. Chem. Phys. 20 (2018) 20010 (https://doi.org/10.1039/C8CP02196A)
J. Wang, Ü. A. Kirgöz, J.-W. Mo, J. Lu, A. N. Kawde, A. Muck, Electrochem. Commun. 3 (2001) 203 (https://doi.org/10.1016/S1388-2481(01)00142-4)
R.-l. Stefan, S. G. Bairu, Talanta 63 (2004) 605 (https://doi.org/10.1016/j.talanta.2003.12.023)
S. Motoc, F. Manea, C. Orha, A. Pop, Sensors 19 (6) (2019) 1332 (https://doi.org/10.3390/s19061332)
M. D. Rubianes, G. A. Rivas, Electrochem. Commun. 5 (2003) 689 (https://doi.org/10.1016/S1388-2481(03)00168-1)
K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao, Anal. Sci. 21 (2005) 1383 (http://doi.org/10.2116/analsci.21.1383)
C. L. Brito, E. I. Ferreira, M. A. La-Scalea, Electrochi. Acta 459 (2023) 142486 (https://doi.org/10.1016/j.electacta.2023.142486)
K. Fan, J. Wu, Anal. Methods 5 (2013) 5146 (https://doi.org/10.1039/C3AY40997J)
X. Guo, Y. Yun, V. N. Shanov, H. B. Halsall, W. R. Heineman, Electroanalysis 23 (2011) 1252 (https://doi.org/10.1002/elan.201000674)
C. R. T. Tarley, V. S. Santos, B. E. L. Baêta, A. C. Pereira, L. T. Kubota, J Hazard. Mater. 169 (2009) 256 (https://doi.org/10.1016/j.jhazmat.2009.03.077).
T.L. Hai, T.D. Hai, in Proceedings of the 3rd International Conference on Chemical Engineering, Food and Biotechnology, AIP Conference Proceedings 1878 (2017) 020023 (https://doi.org/10.1063/1.5000191)
H. Liu, P. He, Z. Li, C. Sun, L. Shi, Y. Liu, G. Zhu, J. Li, Electrochem. Commun. 7 (2005) 1357 (https://doi.org/10.1016/j.elecom.2005.09.018).
J. Ping, J. Wu, Y. Ying, M. Wang, G. Liu, M. Zhang, J. Agric. Food Chem. 59 (2011) 4418 (https://doi.org/10.1021/jf200288e).
H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, A. Shirzadmehr, Sens. Actuators, B 186 (2013) 451 (https://doi.org/10.1016/j.snb.2013.06.051)
M. Yang, T.-J. Jiang, Z. Guo, J.-H. Liu, Y.-F. Sun, X. Chen, X.-J. Huang, Sens. Actuators, B 240 (2017) 887 (https://doi.org/10.1016/j.snb.2016.09.060).
L. Oularbi, M. Turmine, F. E. Salih, M. E. Rhazi, J. Environ. Chem. Eng. 8 (2020) 103774 (https://doi.org/10.1016/j.jece.2020.103774)
J. N. Barisci, G. G. Wallace, R. H. Baughman, J. Electroanal. Chem. 488 (2000) 92 (https://doi.org/10.1016/S0022-0728(00)00179-0).
C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, S. D. Minteer, Chem. Sci. 10 (2019) 6404 (https://doi.org/10.1039/C9SC01545K)
S. G. Hernández‐Vargas, C. A. Cevallos‐Morillo, J. C. Aguilar‐Cordero, Electroanalysis 32 (2020) 1938 (https://doi.org/10.1002/elan.201900701)
R. T. Kachoosangi, G. G. Wildgoose, R. G. Compton, Electroanalysis 19 (2007) 1483 (https://doi.org/10.1002/elan.200703883).
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 95 (2018) 197 (https://doi.org/10.1021/acs.jchemed.7b00361)
M. Sýs, E. Khaled, R. Metelka, K. Vytřas, J. Serb. Chem. Soc. 82 (2017) 865 (https://doi.org/10.2298/JSC170207048S)
G. Shul, J. Sirieix-Plenet, L. Gaillon, M. Opallo, Electrochem. Commun. 8 (2006) 1111 (https://doi.org/10.1016/j.elecom.2006.05.002)
K. Kirchner, T. Kirchner, V. Ivaništšev, M. V. Fedorov, Electrochim. Acta 110 (2013) 762 (https://doi.org/10.1016/j.electacta.2013.05.049)
N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78 (2006) 3820 (https://doi.org/10.1021/ac060070+)
M. Musameh, J. Wang, Anal. Chim. Acta 606 (2008) 45 (https://doi.org/10.1016/j.aca.2007.11.012)
Y. Zhang, J. B. Zheng, Electrochim. Acta 52 (2007) 7210 (https://doi.org/10.1016/j.electacta.2007.05.039)
J.-Y. Lu, Y.-S. Yu, T.-B. Chen, C.-F. Chang, S. Tamulevičius, D. Erts, K. C.-W. Wu, Y. Gu, Polymers 13 (2021) 343 (https://doi.org/10.3390/polym13030343)
M. B. Gholivand, A. Azadbakht, Electrochim. Acta 56 (2011) 10044 (https://doi.org/10.1016/j.electacta.2011.08.098)
O. A. González-Meza, E. R. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J. I. Escalante, M. Bárcena-Soto, J. Solid State Electrochem. 23 (2019) 3123 (http://doi.org/10.1007/s10008-019-04410-6)
P. Monk, in Fundamentals of Electro-Analytical Chemistry, P. Monk, Ed., John Wiley & Sons Ltd., Chichester, 2001, p 131 (https://doi.org/10.1002/9780470511329.ch6)
T. Tichter, J. Schneider, C. Roth, Front. Energy Res. 8 (2020) 155 (https://doi.org/10.3389/fenrg.2020.00155)
J. S. Čović, A. R. Zarubica, A. L. Bojić, T. M. Troter, M. S. Ranđelović, J. Serb. Chem. Soc. 85 (2020) 1185 (https://doi.org/10.2298/JSC200221043C)
C. O. Laoire, E. Plichta, M. Hendrickson, S. Mukerjee, K. M. Abraham, Electrochim. Acta 54 (26) (2009) 6560 (https://doi.org/10.1016/j.electacta.2009.06.041)
H. S. Magar, R. Y. Hassan, A. Mulchandani, Sensors 21 (19) (2021) 6578 (https://doi.org/10.3390/s21196578)
M. S. Ahmad, I. M. Isa, N. Hashim, S. M. Si, M. I. Saidin, J. Solid State Electrochem. 22 (2018) 2691 (http://doi.org/10.1007/s10008-018-3979-y)
A. C. Lazanas, M. I. Prodromidis, ACS Meas. Sci. Au 3 (3) (2023) 162 (https://doi.org/10.1021/acsmeasuresciau.2c00070)
T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S. R. Waldvogel, Chem. Rev. 121 (2021) 10241 (https://doi.org/10.1021/acs.chemrev.1c00148)
D. Zhao, X. Guo, T. Wang, N. Alvarez, V. N. Shanov, W. R. Heineman, Electroanalysis 26 (2014) 488 (https://doi.org/10.1002/elan.201300511)
M. Tian, L. Fang, X. Yan, W. Xiao, K. H. Row, J. Anal. Methods Chem. 2019 (2019) 1948965 (https://doi.org/10.1155/2019/1948965)
C. M. Simonescu, V. Lavric, A. Musina, O. M. Antonescu, D. C. Culita, V. Marinescu, C. Tardei, O. Oprea, A. M. Pandele, J. Mol. Liq. 307 (2020) 112973 (https://doi.org/10.1016/j.molliq.2020.112973)
R. Nazar, N. Iqbal, A. Masood, M. I. R. Khan, S. Syeed, N. A. Khan, Am. J. Plant Sci. 3 (2012) 1476 (http://doi.org/10.4236/ajps.2012.310178).