[BMIm][PF6]/silicon oil/multi-walled carbon nanotubes paste electrode: Electrochemical properties and application for lead and cadmium ion determinations Scientific paper

Main Article Content

Hai D. Tran
https://orcid.org/0000-0002-0103-8866
Uyen P. N. Tran
https://orcid.org/0000-0001-6038-3873
Dinh Quan Nguyen
https://orcid.org/0000-0001-8906-9773

Abstract

The electroanalytical methods have been developed for wide applic­ation, especially for trace metal ions. In this study, the applicability of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) ionic liquid as a pasting binder to fabricate a multi-walled carbon nanotube paste electrode (MWCNT PE) for detecting Pb2+ and Cd2+ was evaluated. The electrochemical properties of electrodes were explored by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep anodic stripping voltammetry. The use of [BMIm][PF6] alone as a conductive binder resulted in an electrode that was unsatisfactory for electrochemical analysis. However, the MWCNT PE with the pasting mixture of silicon oil and [BMIm][PF6] displayed excellent sensitivity for the Pb2+ and Cd2+ determinations, with limits of detection of 2.25 and 1.59 mg L-1, respectively. The proposed electrode was demonstrated to be a reliable sensor for accurately quantifying trace amounts of Pb2+ and Cd2+, exhibiting good repeatability, reproducibility and stability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. D. Tran, U. P. N. Tran, and D. Q. Nguyen, “[BMIm][PF6]/silicon oil/multi-walled carbon nanotubes paste electrode: Electrochemical properties and application for lead and cadmium ion determinations: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 63–77, Feb. 2024.
Section
Electrochemistry

References

M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, Interdiscip. Toxicol. 7 (2014) 60-72 (https://doi.org/10.2478/intox-2014-0009)

M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Front. Pharmacol. 12 (2021) 227 (https://doi.org/10.3389/fphar.2021.643972)

X. Yang, J. Yan, F. Wang, J. Xu, X. Liu, K. Ma, X. Hu, J. Ye, J. Serb. Chem. Soc. 81 (2016) 697 (https://doi.org/10.2298/10.2298/JSC151124011Y)

M. E. Morales, R. S. Derbes, C. M. Ade, J. C. Ortego, J. Stark, P. L. Deininger, A. M. Roy-Engel, PloS One 11 (2016) e0151367 (https://doi.org/10.1371/journal.pone.0151367)

B. K. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, Biosens. Bioelectron. 94 (2017) 443 (https://doi.org/10.1016/j.bios.2017.03.031)

E. C. Okpara, O. E. Fayemi, O. B. Wojuola, D. C. Onwudiwe, E. E. Ebenso, RSC Adv. 12 (40) (2022) 26319 (https://doi.org/10.1039/D2RA02733J)

J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, J. Serb. Chem. Soc. 82 (2017) 73 (https://doi.org/10.2298/JSC160419090L)

O. A. Farghaly, R. A. Hameed, A.-A. H. Abu-Nawwas, Int. J. Electrochem. Sci. 9 (2014) 3287 (http://www.electrochemsci.org/papers/vol9/90603287.pdf).

J. M. Díaz-Cruz, N. Serrano, C. Pérez-Ràfols, C. Ariño, M. Esteban, J. Solid State Electrochem. 24 (2020) 2653 (http://doi.org/10.1007/s10008-020-04733-9)

C. Apetrei, I. M. Apetrei, J. A. D. Saja, M. L. Rodriguez-Mendez, Sensors 11 (2) (2011) 1328 (https://doi.org/10.3390/s110201328)

R. Rejithamol, S. Beena, Front. Sens. 3 (2022) 901628 (https://doi.org/10.3389/fsens.2022.901628)

A. J. Slate, D. A. Brownson, A. S. A. Dena, G. C. Smith, K. A. Whitehead, C. E. Banks, Phys. Chem. Chem. Phys. 20 (2018) 20010 (https://doi.org/10.1039/C8CP02196A)

J. Wang, Ü. A. Kirgöz, J.-W. Mo, J. Lu, A. N. Kawde, A. Muck, Electrochem. Commun. 3 (2001) 203 (https://doi.org/10.1016/S1388-2481(01)00142-4)

R.-l. Stefan, S. G. Bairu, Talanta 63 (2004) 605 (https://doi.org/10.1016/j.talanta.2003.12.023)

S. Motoc, F. Manea, C. Orha, A. Pop, Sensors 19 (6) (2019) 1332 (https://doi.org/10.3390/s19061332)

M. D. Rubianes, G. A. Rivas, Electrochem. Commun. 5 (2003) 689 (https://doi.org/10.1016/S1388-2481(03)00168-1)

K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao, Anal. Sci. 21 (2005) 1383 (http://doi.org/10.2116/analsci.21.1383)

C. L. Brito, E. I. Ferreira, M. A. La-Scalea, Electrochi. Acta 459 (2023) 142486 (https://doi.org/10.1016/j.electacta.2023.142486)

K. Fan, J. Wu, Anal. Methods 5 (2013) 5146 (https://doi.org/10.1039/C3AY40997J)

X. Guo, Y. Yun, V. N. Shanov, H. B. Halsall, W. R. Heineman, Electroanalysis 23 (2011) 1252 (https://doi.org/10.1002/elan.201000674)

C. R. T. Tarley, V. S. Santos, B. E. L. Baêta, A. C. Pereira, L. T. Kubota, J Hazard. Mater. 169 (2009) 256 (https://doi.org/10.1016/j.jhazmat.2009.03.077).

T.L. Hai, T.D. Hai, in Proceedings of the 3rd International Conference on Chemical Engineering, Food and Biotechnology, AIP Conference Proceedings 1878 (2017) 020023 (https://doi.org/10.1063/1.5000191)

H. Liu, P. He, Z. Li, C. Sun, L. Shi, Y. Liu, G. Zhu, J. Li, Electrochem. Commun. 7 (2005) 1357 (https://doi.org/10.1016/j.elecom.2005.09.018).

J. Ping, J. Wu, Y. Ying, M. Wang, G. Liu, M. Zhang, J. Agric. Food Chem. 59 (2011) 4418 (https://doi.org/10.1021/jf200288e).

H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, A. Shirzadmehr, Sens. Actuators, B 186 (2013) 451 (https://doi.org/10.1016/j.snb.2013.06.051)

M. Yang, T.-J. Jiang, Z. Guo, J.-H. Liu, Y.-F. Sun, X. Chen, X.-J. Huang, Sens. Actuators, B 240 (2017) 887 (https://doi.org/10.1016/j.snb.2016.09.060).

L. Oularbi, M. Turmine, F. E. Salih, M. E. Rhazi, J. Environ. Chem. Eng. 8 (2020) 103774 (https://doi.org/10.1016/j.jece.2020.103774)

J. N. Barisci, G. G. Wallace, R. H. Baughman, J. Electroanal. Chem. 488 (2000) 92 (https://doi.org/10.1016/S0022-0728(00)00179-0).

C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, S. D. Minteer, Chem. Sci. 10 (2019) 6404 (https://doi.org/10.1039/C9SC01545K)

S. G. Hernández‐Vargas, C. A. Cevallos‐Morillo, J. C. Aguilar‐Cordero, Electroanalysis 32 (2020) 1938 (https://doi.org/10.1002/elan.201900701)

R. T. Kachoosangi, G. G. Wildgoose, R. G. Compton, Electroanalysis 19 (2007) 1483 (https://doi.org/10.1002/elan.200703883).

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 95 (2018) 197 (https://doi.org/10.1021/acs.jchemed.7b00361)

M. Sýs, E. Khaled, R. Metelka, K. Vytřas, J. Serb. Chem. Soc. 82 (2017) 865 (https://doi.org/10.2298/JSC170207048S)

G. Shul, J. Sirieix-Plenet, L. Gaillon, M. Opallo, Electrochem. Commun. 8 (2006) 1111 (https://doi.org/10.1016/j.elecom.2006.05.002)

K. Kirchner, T. Kirchner, V. Ivaništšev, M. V. Fedorov, Electrochim. Acta 110 (2013) 762 (https://doi.org/10.1016/j.electacta.2013.05.049)

N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78 (2006) 3820 (https://doi.org/10.1021/ac060070+)

M. Musameh, J. Wang, Anal. Chim. Acta 606 (2008) 45 (https://doi.org/10.1016/j.aca.2007.11.012)

Y. Zhang, J. B. Zheng, Electrochim. Acta 52 (2007) 7210 (https://doi.org/10.1016/j.electacta.2007.05.039)

J.-Y. Lu, Y.-S. Yu, T.-B. Chen, C.-F. Chang, S. Tamulevičius, D. Erts, K. C.-W. Wu, Y. Gu, Polymers 13 (2021) 343 (https://doi.org/10.3390/polym13030343)

M. B. Gholivand, A. Azadbakht, Electrochim. Acta 56 (2011) 10044 (https://doi.org/10.1016/j.electacta.2011.08.098)

O. A. González-Meza, E. R. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J. I. Escalante, M. Bárcena-Soto, J. Solid State Electrochem. 23 (2019) 3123 (http://doi.org/10.1007/s10008-019-04410-6)

P. Monk, in Fundamentals of Electro-Analytical Chemistry, P. Monk, Ed., John Wiley & Sons Ltd., Chichester, 2001, p 131 (https://doi.org/10.1002/9780470511329.ch6)

T. Tichter, J. Schneider, C. Roth, Front. Energy Res. 8 (2020) 155 (https://doi.org/10.3389/fenrg.2020.00155)

J. S. Čović, A. R. Zarubica, A. L. Bojić, T. M. Troter, M. S. Ranđelović, J. Serb. Chem. Soc. 85 (2020) 1185 (https://doi.org/10.2298/JSC200221043C)

C. O. Laoire, E. Plichta, M. Hendrickson, S. Mukerjee, K. M. Abraham, Electrochim. Acta 54 (26) (2009) 6560 (https://doi.org/10.1016/j.electacta.2009.06.041)

H. S. Magar, R. Y. Hassan, A. Mulchandani, Sensors 21 (19) (2021) 6578 (https://doi.org/10.3390/s21196578)

M. S. Ahmad, I. M. Isa, N. Hashim, S. M. Si, M. I. Saidin, J. Solid State Electrochem. 22 (2018) 2691 (http://doi.org/10.1007/s10008-018-3979-y)

A. C. Lazanas, M. I. Prodromidis, ACS Meas. Sci. Au 3 (3) (2023) 162 (https://doi.org/10.1021/acsmeasuresciau.2c00070)

T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S. R. Waldvogel, Chem. Rev. 121 (2021) 10241 (https://doi.org/10.1021/acs.chemrev.1c00148)

D. Zhao, X. Guo, T. Wang, N. Alvarez, V. N. Shanov, W. R. Heineman, Electroanalysis 26 (2014) 488 (https://doi.org/10.1002/elan.201300511)

M. Tian, L. Fang, X. Yan, W. Xiao, K. H. Row, J. Anal. Methods Chem. 2019 (2019) 1948965 (https://doi.org/10.1155/2019/1948965)

C. M. Simonescu, V. Lavric, A. Musina, O. M. Antonescu, D. C. Culita, V. Marinescu, C. Tardei, O. Oprea, A. M. Pandele, J. Mol. Liq. 307 (2020) 112973 (https://doi.org/10.1016/j.molliq.2020.112973)

R. Nazar, N. Iqbal, A. Masood, M. I. R. Khan, S. Syeed, N. A. Khan, Am. J. Plant Sci. 3 (2012) 1476 (http://doi.org/10.4236/ajps.2012.310178).