Ligands containing 7-azaindole functionality for inner-sphere hydrogen bonding: Structural and photophysical investigations Scientific paper

Main Article Content

Alec Coles
https://orcid.org/0009-0008-1611-6004
Oskar Wood
https://orcid.org/0009-0004-0173-2673
Chris Hawes
https://orcid.org/0000-0001-6902-7939

Abstract

The synthesis, structural analysis and spectroscopic characterisation of three new 7-azaindole ligands is reported, alongside a novel 7-azaindole der­ived coordination polymer, with the aim of identifying new bridging ligands containing inner-sphere hydrogen bond donor functionality. Structural charac­terisation shows that the 7-azaindole hydrogen bond donor ability is signific­antly stronger in the hydrazone and imine species 1 and 2 compared to the amine 3, with the opposite trend evident in their hydrogen bond acceptor char­acter. These findings are mirrored by the fluorescence spectroscopy results which show bimodal emission, characteristic of multiple emissive species rel­ated by proton transfer, is only evident in the amine species and not the more acidic imines. The polymeric copper(II) complex of the hydrazone ligand 1 shows the anticipated inner-sphere hydrogen bonding with a similar donor strength to that observed in the free ligand, which leads to deformation in the remainder of the coordination sphere. These results show the untapped vers­at­ility of the 7-azaindole functional group as a building block for ligands in coor­dination polymers and other multinuclear assemblies, with the potential for both stabilisation through hydrogen bonding and interesting photophysical properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Coles, O. Wood, and C. Hawes, “Ligands containing 7-azaindole functionality for inner-sphere hydrogen bonding: Structural and photophysical investigations: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1223–1236 , Dec. 2023.
Section
Theme issue honoring Professor Vukadin Leovac's 80th birthday

Funding data

References

Z. Yin, Y.-L. Zhou, M.-H. Zeng, M. Kurmoo, Dalton Trans. 44 (2015) 5258 (https://doi.org/10.1039/C4DT04030A)

B. G. Diamond, L. I. Payne, C. H. Hendon, Commun. Chem. 6 (2023) 67 (https://doi.org/10.1038/s42004-023-00863-z)

M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 295 (2002) 469 (https://doi.org/10.1126/science.1067208)

M. M. Radanović, S. B. Novaković, M. V. Rodić, L. S. Vojinović-Ješić, C. Janiak, V. M. Leovac, J. Serb. Chem. Soc. 87 (2022) 1259 (https://doi.org/10.2298/JSC220613072R)

P. D. Frischmann, V. Kunz, F. Würthner, Angew. Chem. Int. Ed. 54 (2015) 7285 (https://doi.org/10.1002/anie.201501670)

J. G. Betancourth, J. A. Castaño, R. Visbal, M. N. Chaur, Eur. J. Org. Chem. 2022 (2022) e202200228 (https://doi.org/10.1002/ejoc.202200228)

V. M. Leovac, V. S. Jevtović, L. S. Jovanović, G. A. Bogdanović, J. Serb. Chem. Soc. 70 (2005) 393 (https://doi.org/10.2298/JSC0503393L)

A. Erxleben, Inorg. Chim. Acta 472 (2018) 40 (https://doi.org/10.1016/j.ica.2017.06.060)

J.-F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, J. Am. Chem. Soc. 141 (2019) 3605 (https://doi.org/10.1021/jacs.8b12800)

S. Shaw, J. D. White, Chem. Rev. 119 (2019) 9381 (https://doi.org/10.1021/acs.chemrev.9b00074)

V. M. Leovac, M. V. Rodić, L. S. Jovanović, M. D. Joksović, T. Stanojković, M. Vujčić, D. Sladić, V. Marković, L. S. Vojinović-Ješić, Eur. J. Inorg. Chem. 2015 (2015) 882 (https://doi.org/10.1002/ejic.201403050)

A. Ferguson, M. A. Squire, D. Siretanu, D. Mitcov, C. Mathonière, R. Clérac, P. E. Kruger, Chem. Commun. 49 (2013) 1597 (https://doi.org/10.1039/C3CC00012E)

L. Fabbrizzi, J. Org. Chem. 85 (2020) 12212 (https://doi.org/10.1021/acs.joc.0c01420)

C. S. Hawes, Dalton Trans. 50 (2021) 6034 (https://doi.org/10.1039/D1DT00675D)

X.-L. Lv, S. Yuan, L.-H. Xie, H. F. Darke, Y. Chen, T. He, C. Dong, B. Wang, Y.-Z. Zhang, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc. 141 (2019) 10283 (https://doi.org/10.1021/jacs.9b02947)

K. Wang, Q. Wang, X. Wang, M. Wang, Q. Wang, H.-M. Shen, Y,-F. Yang, Y. She, Inorg. Chem. Front. 7 (2020) 3548 (https://doi.org/10.1039/D0QI00772B)

T. Basu, H. A. Sparkes, M. K. Bhunia, R. Mondal, Cryst. Growth Des. 9 (2009) 3488 (https://doi.org/10.1021/cg900195f)

C. S. Hawes, B. Moubaraki, K. S. Murray, P. E. Kruger, D. R. Turner, S. R. Batten, Cryst. Growth Des. 14 (2014) 5749 (https://doi.org/10.1021/cg501004u)

M. R. Healy, J. W. Roebuck, E. D. Doidge, L. C. Emeleus, P. J. Bailey, J. Campbell, A. J. Fischmann, J. B. Love, C. A. Morrison, T. Sassi, D. J. White, P. A. Tasker, Dalton Trans. 45 (2016) 3055 (https://doi.org/10.1039/C5DT04055H)

O. G. Wood, C. S. Hawes, CrystEngComm 24 (2022) 8197 (https://doi.org/10.1039/D2CE01475K)

R. S. Moog, M. Maroncelli, J. Phys. Chem. 95 (1991) 10359 (https://doi.org/10.1021/j100178a023)

X.-F. Yu, S. Yamazaki, T. Taketsugu, J. Chem. Theory Comput. 7 (2011) 1006 (https://doi.org/10.1021/ct200022a)

D. E. Folmer, E. S. Wisniewski, S. M. Hurley, A. W. Castleman Jr. Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 12980 (https://doi.org/10.1073/pnas.96.23.12980)

A. V. Smirnov, D. S. English, R. L. Rich, J. Lane, L. Teyton, A. W. Schwabacher, S. Luo, R. W. Thornburg, J. W. Petrich, J. Phys. Chem., B 101 (1997) 2758 (https://doi.org/10.1021/jp9630232)

E. Wong, J. Li, C. Seward, S. Wang, Dalton Trans. (2009) 1776 (https://doi.org/10.1039/B814393E)

A. Domínguez-Martín, M. P. Brandi-Blanco, A. Matilla-Hernández, H. El Bakkali, V. M. Nurchi, J. M. González-Pérez, A. Castiñeiras, J. Niclós-Gutiérrez, Coord. Chem. Rev. 257 (2013) 2814 (https://doi.org/10.1016/j.ccr.2013.03.029)

B. Morzyk-Ociepa, K. Szmigiel, R. Petrus, I. Turowska-Tyrk, D. Michalska, J. Mol. Struct. 1144 (2017) 338 (https://doi.org/10.1016/j.molstruc.2017.05.059)

T. Steiner, Acta Crystallogr., B 57 (2001) 103 (https://doi.org/10.1107/S0108768100014348)

Y. Chen., R. L. Rich, F. Gai, J. W. Petrich, J. Phys. Chem. 97 (1993) 1770 (https://doi.org/10.1021/j100111a011)

P. Doungdee, S. Sarel, N. Wongvisetsirikul, S. Avramovici-Grisaru, J. Chem. Soc., Perkin Trans. 2 (1995) 319 (https://doi.org/10.1039/P29950000319)

M. C. Etter, J. C. MacDonald, J. Bernstein, Acta Crytallogr., B 46 (1990) 256 (https://doi.org/10.1107/S0108768189012929)

B. Morzyk-Ociepa, K. Dysz, I. Turowska-Tyrk, D. Michalska, J. Mol. Struct. 1101 (2015) 91 (https://doi.org/10.1016/j.molstruc.2015.08.003)

T. Beyer, S. L. Price, J. Phys. Chem., B 104 (2000) 2647 (https://doi.org/10.1021/jp9941413)

M. Nishio, CrystEngComm 6 (2004) 130 (https://doi.org/10.1039/B313104A)

H. Yokoyama, H. Watanabe, T. Omi, S. Ishiuchi, M. Fujii, J. Phys. Chem., A 105 (2001) 9366 (https://doi.org/10.1021/jp011245g)

H. Masui, S. Kanda, S. Fuse, Commun. Chem. 6 (2023) 47 (https://doi.org/10.1038/s42004-023-00837-1)

A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. (1984) 1349 (https://doi.org/10.1039/DT9840001349)

G. Bartlett, I. Langmuir, J. Am. Chem. Soc. 43 (1921) 84 (https://doi.org/10.1021/ja01434a010)

C. A. Taylor, M. A. El-Bayoumi, M. Kasha, Proc. Natl. Acad. Sci. U.S.A. 63 (1969) 253 (https://doi.org/10.1073/pnas.63.2.253)

J. Konijnenberg, A. H. Huizer, C. A. G. O. Varma, J. Chem. Soc., Faraday Trans. 2 84 (1988) 1163 (https://doi.org/10.1039/F29888401163).