Spectroscopic and structural characterization of hexaamminecobalt(III) dibromide permanganate Scientific paper
Main Article Content
Abstract
Structural and spectroscopic characterization (SXRD, IR, liq. N2 temperature Raman, UV) of hexaamminecobalt(III) dibromide permanganate, [Co(NH3)6]Br2(MnO4) (compound 1), are described. There is a 3D hydrogen bond network including N–H···O–Mn and N–H···Br interactions, which could serve as potential reaction centres for solid-phase redox reactions between the ammonia ligands and/or bromide ions as reductants and permanganate ions as oxidant agents. The effect of the nature of halogen ions on the structural and spectroscopic properties of [Co(NH3)6]Br2(MnO4) and the analogous chloride compound, [Co(NH3)6]Cl2(MnO4) (compound 2), are discussed in detail.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
European Regional Development Fund
Grant numbers VEKOP-2.3.2-16-2017-00013 -
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Grant numbers ÚNKP-21-3 and 22-3 -
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Grant numbers OTKA grant K124544 -
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-68/2023-14/200125
References
B. Barta Holló, V. M. Petruševski,G. B. Kovács, F. P. Franguelli, A. Farkas, A. Meny-hárd, G. Lendvay, I. E. Sajó, L. Bereczki, R. P. Pawar, E. Bódis, I. M. Szilágyi, L. Kótai, J. Therm. Anal. Calorim. 138 (2019)1193 (https://doi.org/10.1007/s10973-019-08663-1)
G. B. Kovács, N. V. May, P. A. Bombicz, S. Klébert, P. Németh, A. Menyhárd, G. Novodárszki, V. Petruševski, F. P. Franguelli, J. Magyari, K. Béres, I. M. Szilágyi, L. Kótai, RSC Adv. 9 (2019) 28387 (https://doi.org/10.1039/C9RA03230D)
K.A. Béres, Z. Homonnay, L. Kvitek, Zs. Dürvanger, M. Kubikova, V. Harmat, F. Szilágyi, Zs. Czégény, P. Németh, L. Bereczki, V.M. Petrusevski, M. Pápai, A. Farkas, L. Kótai, Inorg. Chem. 61 (2022) 14403 (https://doi.org/10.1021/acs.inorgchem.2c02265)
L. Bereczki, L. A. Fogaca, Zs. Durvanger, V. Harmat, K. Kamarás, G. Németh, B. Barta Holló, V. Petruševski, E. Bódis, A. Farkas, I. M. Szilágyi, L. Kótai, J. Coord. Chem. 74 (2021) 2144 (https://doi.org/10.1080/00958972.2021.1953489)
V. M. Petruševski, K. A. Béres, P. Bombicz, A. Farkas, L. Kótai, L. Bereczki, Maced. J. Chem. Chem. Eng. 41 (2022) 37 (https://doi.org/10.20450/mjcce.2022.2490)
F.F. Tao, Chem. Soc. Rev. 41 (2012) 7977 (https://doi.org/10.1039/C2CS90093A)
L. Kótai, K. K. Banerji, I. Sajó, J. Kristof, B. Sreedhar, S. Holly, G. Keresztury, A. Rockenbauer, Helv. Chim. Acta 85 (2002) 2316 (https://doi.org/10.1002/1522-2675(200208)85:8<2316::AID-HLCA2316>3.0.CO;2-A)
V. I. Saloutin, Y. O. Edilova, Y. S. Kudyakova, Y. V. Burgart, D. N. Bazhin, Molecules 27 (2022) 7894 (https://doi.org/10.3390/molecules27227894)
L. Kótai, I. E. Sajó, E. Jakab, G. Keresztury, Cs. Németh, I. Gács, A. Menyhárd, J. Kristóf, L. Hajba, V. Petruševski, V. Ivanovski, D. Timpu, P. L. Sharma, Z. Anorg. All. Chem. 638 (2012) 177 ( https://doi.org/10.1002/zaac.201100467)
I. E. Sajó, L. Kótai, G. Keresztury, I. Gács, Gy. Pokol, J. Kristóf, B. Soptrayanov, V. Petruševski, D. Timpu, P.K. Sharma, Helv. Chim. Acta 91 (2008) 1646 (https://doi.org/10.1002/hlca.200890180)
M. Mansouri, H. Atashi, F. F. Tabrizi, A. A. Mirzaei, G. Mansouri, J. Ind. Eng. Chem. 19 (2013) 1177 (https://doi.org/10.1016/j.jiec.2012.12.015)
L. Bereczki, V. M. Petruševski, F. P. Franguelli, K. A. Béres, A. Farkas, B. Barta Holló, Zs. Czégény, I. M. Szilágyi, L. Kótai, Inorganics 10 (2022) 252 (https://doi.org/10.3390/inorganics10120252)
R. N. Mehrotra, Inorganics 11(2023), 308 https://doi.org/10.3390/inorganics11070308
L. A. Fogaça, L. Bereczki, V. M. Petruševski, B. Barta Holló, F. P. Franguelli, M. Mohai, K. A. Béres, I. E. Sajó, I. M. Szilágyi, L. Kotai, Inorganics 9 (2021) 38 (https://doi.org/10.3390/inorganics9050038)
F. P. Franguelli, B. Barta Holló, V. M. Petruševski, I. E. Sajó, S. Klébert, A. Farkas, E. Bódis, I. M. Szilágyi, R. P. Pawar, L. Kótai, J. Therm. Anal. Calorim. 145 (2021) 2907 (https://doi.org/10.1007/s10973-020-09991-3)
K. A. Béres, I. E. Sajó, G. Lendvay, L. Trif, V. M. Petruševski, B. Barta Holló, L. Korecz, F. P. Franguelli, K. László, I. M. Szilágyi, L. Kótai, Molecules 26 (2021) 4022 (https://doi.org/10.3390/molecules26134022)
F. P. Franguelli, É. Kováts, Zs. Czégény, L. Bereczki, V. M. Petruševski, B. Barta Holló, K. A. Béres, A. Farkas, I. M. Szilágyi, L. Kótai, Inorganics 10 (2022) 18 (https://doi.org/10.3390/inorganics10020018)
L. A. Fogaca, É. Kováts, G. Németh, K. Kamarás, K. A. Béres, P. Németh, V. Petruševski, L. Bereczki, B. Barta Holló, I. E. Sajó, I. M. Szilágyi, L. Kótai, Inorg. Chem. 60 (2021) 3749 (https://doi.org/10.1021/acs.inorgchem.0c03498)
H. E. Solt, P. Németh, M. Mohai, I. E. Sajó, S. Klébert, F. P. Franguelli, L. A. Fogaca, R. P. Pawar, L. Kótai, ACS Omega 6 (2021) 1523 (https://doi.org/10.1021/acsomega.0c05301)
K. A. Béres, Z. Homonnay, B. Barta Holló, M. Gracheva, V. M. Petruševski, A. Farkas, Zs. Dürvanger, L. Kótai, J. Mater. Res. 38 (2023) 1102 (https://doi.org/10.1557/s43578-022-00794-w)
K. A. Béres, F. Szilágyi, Z. Homonnay, Zs. Dürvanger, L. Bereczki, L. Trif, V. M. Petruševski, A. Farkas, N. Bayat, L. Kótai, Inorganics 11 (2023) 68 (https://doi.org/10.3390/inorganics11020068)
T. Klobb, Bull. Soc. Chim. 47 (1887) 240
S. M. Jörgensen, J. Prakt. Chem. 35 (1887) 417
L. Kótai, L. Gács, I. E. Sajó, P. K. Sharma, K. K. Banerji, Trends. Inorg. Chem. 11 (2011) 25 (10.1002/chin.201113233)
L. Kótai, I. E. Sajó, I. Gács, K. S. Pradeep, K. K. Banerji, Z. Anorg. All. Chem. 633 (2007) 1257 ( https://doi.org/10.1002/zaac.200700142)
L. Kótai, K. K. Banerji, Synth. React. Inorg. Met. Org. Chem. 31 (2001) 491 (https://doi.org/10.1081/SIM-100002234)
L. Kótai, A. Keszler, J. Pató, S. Holly, K. K. Banerji, Ind. J. Chem., A 38 (1998) 966 (https://nopr.niscpr.res.in/handle/123456789/15865)
T. Klobb, Bull. Soc. Chim. Paris 25 (1901) 1022 (https://www.persee.fr/doc/bulmi_0366-3248_1901_num_24_5_2591)
Y. Chen, D. H. Christensen, G. O. Sorensen, O. F. Nielsen, E. B. Pedersen, J. Mol. Struct. 299 (1993) 61 (https://doi.org/10.1016/0022-2860(93)80283-2)
C. Téllez, Semin., Ciênc. Exatas Tecnol. 3 (1982) 185 (http://dx.doi.org/10.5433/1679-0367.1982v3n11p185)
K. H. Schmidt, A. Müller, J. Mol Struct. 22 (1974) 343 (https://doi.org/10.1016/0022-2860(74)85004-0)
B. L. Sacconi, A. Sabatini, P. Cans, Inorg. Chem. 3 (1964) 1772 (https://doi.org/10.1021/ic50022a026)
H. Block, Trans. Faraday Soc. 55 (1959) 867 (https://doi.org/10.1039/TF9595500867)
A. A. Grinberg, Y. S. Varshavskii, Primen. Molekul. Spektr. Khim. 0 (1966) 104
E. J. Baran, P. J. Aymonino, Z. Anorg. Allg. Chem. 362 (1968) 215 (https://doi.org/10.1002/zaac.19683620312)
W. Kiefer, H. J. Bernstein, Mol. Phys. 23 (1972) 835 (https://doi.org/10.1080/00268977200100841)
P. Hendry, A. Ludi, Adv. Inorg. Chem. 35 (1990) 117 (https://doi.org/10.1016/S0898-8838(08)60162-2)
H. Sakiyama, Y. Ishiyama, H. Sugawara, Spectrosc. Lett. 50 (2017) 111 (https://doi.org/10.1080/00387010.2017.1295272)
R. Benedix, H. Hennig, C. Nieke, Inorg. Chim. Acta 172 (1990) 109 (https://doi.org/10.1016/S0020-1693(00)80458-2)
Y. Mitsutsuka, I. Kondo, M. Nakahara, Bull. Chem. Soc. Japan 59 (1986) 2767 (http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8207253)
R. B. Wilson, E. I. Solomon, J. Am. Chem. Soc. 102 (1980) 4085 (https://doi.org/10.1021/ja00532a018)
R. B. Wilson, E. I. Solomon, Inorg. Chem. 17 (1978) 1729 (https://doi.org/10.1021/ja0286371).