Study of the metal ion adsorption capacity of palygorskite by computer simulation Scientific paper
Main Article Content
Abstract
Palygorskite is a magnesium-rich aluminosilicate clay mineral with a unique chain-layered structure. This structure gives palygorskite a large specific surface area and interesting physical properties. Many researchers have investigated the applications of palygorskite in various fields, including heavy metal adsorption, petroleum and chemical industries, building materials, medicine and agriculture. In this study, molecular dynamics simulations were used to explore the heavy metal adsorption ability of palygorskite. The results showed that polyacrylic acid (PAA) had a heavy metal adsorption ability. In terms of the ability of the substrate to adsorb Pb2+, Ni2+ and Cr3+, palygorskite (attapulgite, ATP) was more effective than SiO2 or clay. Based on this study, the same phenomenon reported in the literature was confirmed, and it was demonstrated that molecular dynamics could properly simulate the filtration of heavy metal ions in water using novel materials. Moreover, H+ was found to play an essential role in assisting PAA/ATP in capturing heavy metal ions. Using this method, we were able to observe the details of heavy-ion adsorption.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministry of Science and Technology, Taiwan
Grant numbers MOST 1110036232
References
R. Rusmin, B. Sarkar, R. Mukhopadhyay, T. Tsuzuki, Y. Liu, R. Naidu, J. Colloid Interface Sci. 608 (2022) 575 (https://doi.org/10.1016/j.jcis.2021.09.109)
G. Eleni, P. Georgios, K. Konstantina, B. Alexandros, Water Supply 22 (2022) 156 (https://doi.org/10.2166/ws.2021.283)
Y. Wei, M. Usman, M. Faroop, M. Adeel, F. U. Haider, Z. Pan, W. Chen, H. Liu, L. Cai, Water, Air, Soil Poll. 233 (2022) 48 (https://doi.org/10.1007/s11270-022-05513-z)
B. Ma, J. Yao, Z. Chen, B. Liu, J. Kim, C. Zhao, X. Zhu, V. G. Mihucz, T. Minkina, T. S. Knudsen, Chemosphere 287 (2022) 131970 (https://doi.org/10.1016/j.chemosphere.2021.131970)
S. Y. Zhang, Y. L. Zhang, X. S. Su, Y. Zhang, Chem. Res. Chin. Univ. 29 (2013) 37 (https://doi.org/10.1007/s40242-013- 2303-8)
A. B. F. Câmara, R. V. Sales, L. C. Bertolino, R. P. P. Furlanetto, E. Rodriguez-Cas-tellón, L. S. de Carvalho, Adsorption 26 (2020) 267 (https://doi.org/10.1007/s10450-019-00144-z)
P. Zhai, H. Liu, F. Sun, T. Chen, X. Zou, H. Wang, Z. Chu, C. Wang, M. Liu, D. Chen, Appl. Clay Sci. 216 (2022) 106327 (https://doi.org/10.1016/j.clay.2021.106327)
A. Mavrikos, D. Papoulis, N. Todorova, I. Papailias, C. Trapalis, D. Panagiotaras, D. A. Chalkias, E. Stathatos, E. Gianni, K. Somalakidi, D. Sygkridou, S. Komarneni, J. Photochem. Photobiol., A 423 (2022) 113568 (https://doi.org/10.1016/j.jphotochem.2021.113568)
X. Zhou, H. Jin, A. Gu, X. Li, L. Sun, P. Mao, Y. Yang, S. Ding, J. Chen, S. Yun, J. Clean. Prod. 335 (2022) 130367 (https://doi.org/10.1016/j.jclepro.2022.130367)
Y. Wang, K. Cui, B. Fang, F. Wang, Nanomaterials 12 (2022) 609 (https://doi.org/10.3390/nano12040609)
S. Chalvatzi, M. S. Kalamaki, K. Arsenos, P. Fortomaris, J. Appl. Microbiol. 120 (2022) 1033 (https://doi.org/10.1111/jam.13041)
J. Wu, S. Ding, J. Chen, S. Zhou, H. Ding, Int. J. Biol. Macromol. 68 (2014) 107 (https://doi.org/10.1016/j.ijbiomac.2014.04.030)
Y. Yong, Y. Xu, Q. Huang, Y. Sun, L. Wang, X. Liang, X. Qin, L. Zhao, Sci. Total Environ. 813 (2022) 152636 ( https://doi.org/10.1016/j.scitotenv.2021.152636)
J. Shao, Y. Zhang, Z. Liu, Z. Fei, Y. Sun, Z. Chen, X. Wen, W. Shi, D. Wang, C. Gu, Environ. Sci. Pollut. Res. 29 (2 022) 4461 (https://doi.org/10.1007/s11356-021-15997-7)
S. Zhou, A. Xue, Y. Zhang, Q. Wang, M. Li, X. Chu, Y. Zhao, W. Xing, J. Ind. Eng. Chem. (China) 66 (2015) 618 (https://doi.org/10.11949/j.issn.0438-1157.20141244)
C. W. Liu, B. C. Kuo, M. H. Liu,Y. R. Huang, C. C. Chen, J. Mol. Graph. Model. 85 (2018) 331 (https://doi.org/10.1016/j.jmgm.2018.09.009)
A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff., J. Am. Chem. Soc. 114 (1992) 10024 (https://doi.org/10.1021/ja00051a040)
R. Giustetto, R. Compagnoni, Clay Miner. 46 (2011) 371 (https://doi.org/10.1180/claymin.2011.046.3.371)
L. Boudriche, R. Calvet, B. Hamdi, H. Balard, Colloids Surfaces, A 392 (2011) 45 (https://doi.org/10.1016/j.colsurfa.2011. 09.031)
I. Mobasherpour, E. Salahi, M. Pazouki, Arabian J. Chem. 5 (2012) 439 (https://doi.org/10.1016/j.arabjc.2010.12.022)
I. Persson, Pure Appl. Chem. 82 (2010) 901 (https://doi.org/10.1351/PAC-CON- 09-10-22).