Structure and thermal stability of phosphochlorinated polybutadiene/carbon black composite synthesized via oxidative chlorophosphorylation reaction Scientific paper
Main Article Content
Abstract
The aim of the presented work was to obtain a new type of homogeneous composite based on an industrial polymer (polybutadiene, PB) and a well-known inexpensive filler (carbon black P-234, CB). For this purpose, the reaction of oxidative chlorophosphorylation (OxCh) was used. This makes it possible to introduce CB into the cross-linked structure of the modified polymer and ensure optimal distribution of the filler in it. The structure and thermal stability of the composite synthesized by the OxCh reaction were studied. Analysis of the composite by Fourier-transform infrared spectroscopy indicates a uniform distribution of carbon black in the network structure of the matrix and the physical interaction of the phases of the composite. Ultraviolet-visible spectrum data confirmed the improvement in light absorption in a wide range of the electromagnetic spectrum and the decrease in the optical band gap energy of the phosphochlorinated PB (PhPB) matrix with the addition of CB (Eg of PhPB = 3.25 eV; Eg of PhPB/CB composite = 2.28 eV). The influence of CB on the thermal stability of the PhPB matrix was studied using thermogravimetric and differential thermogravimetric analysis. After thermal analysis, the char yield for PhPB was 41 wt. %, and for PhPB/CB composite was 35.2 wt. %. Compared to PhPB, the increase in char yield, the decrease in maximum thermal decomposition temperature, and the high-integrated thermal decomposition temperature for the PhPB/CB composite show the improvement in the thermal stability of PhPB due to CB.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. K. Sahu, K. Sudhakar, R. M. Sarviya, Case Stud. Therm. Eng. 15 (2019) 100534 (https://doi.org/10.1016/j.csite.2019.100534)
J. G. Jeon, G.-W. Hong, H.-G. Park, S. K. Lee, J.-H. Kim, T. J. Kang, Sensors 21 (2021) (https://doi.org/10.3390/s21051560)
B. Matthews, J. Li, S. Sunshine, L. Lerner, J. W. Judy, IEEE Sens. J. 2 (2002) 160 (https://doi.org/10.1109/JSEN.2002.800284)
A. N. Mallya, R. Kottokkaran, P. C. Ramamurthy, Sensors Actuators, B 201 (2014) 308 (https://doi.org/10.1016/j.snb.2014.04.056)
M. Dong, Q. Li, H. Liu, C. Liu, E. K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen, Z. Guo, Polymer 158 (2018) 381 (https://doi.org/10.1016/j.polymer.2018.11.003)
V. Khomenko, O. Butenko, O. Chernysh, V. Barsukov, M. P. Suchea, E. Koudoumas, Coatings 12 (2022) 665 (https://doi.org/10.3390/coatings12050665)
M. R. Berber, T. Fujigaya, N. Nakashima, Mater. Today Energy 10 (2018) 161 (https://doi.org/10.1016/j.mtener.2018.08.016)
H. Doğan, E. Yıldız, M. Kaya, T. Y. Inan, Bull. Mater. Sci. 36 (2013) 563 (https://doi.org/10.1007/s12034-013-0512-x)
M. Andrade-Guel, P. Y. Reyes-Rodríguez, C. J. Cabello-Alvarado, G. Cadenas-Pliego, C. A. Ávila-Orta, Nanomaterials 12 (2022) (https://doi.org/10.3390/nano12234247)
H. Gaminian, M. Montazer, Cellulose 25 (2018) 5227 (https://doi.org/10.1007/s10570-018-1929-6)
M. Faisal, J. Ahmed, J. S.Algethami, M. Jalalah, S. A. Alsareii, M. Alsaiari, F. A. Harraz, J. Ind. Eng. Chem. 121 (2023) 287 (https://doi.org/10.1016/j.jiec.2023.01.032)
L. Battista, L. Mecozzi, S. Coppola, V. Vespini, S. Grilli, P. Ferraro, Appl. Energy 136 (2014) 357 (https://doi.org/10.1016/j.apenergy.2014.09.035)
A. Verma, K. Baurai, M. R. Sanjay, S. Siengchin, Polym. Compos. 41 (2020) 338 (https://doi.org/10.1002/pc.25373)
V. Mishra, IOP Conf. Ser. Mater. Sci. Eng. 1116 (2021) 12004 (https://doi.org/10.1088/1757-899X/1116/1/012004)
F. Avilés, A. I. Oliva-Avilés, M. Cen-Puc, Adv. Eng. Mater. 20 (2018) 1701159 (https://doi.org/10.1002/adem.201701159)
Carbon Black Science and Technology, 2nd ед., J.-B. Donnet, ed., Second Edi Routledge, New York, 1993
O. Kochkodan, V. Maksin, J. Serb. Chem. Soc. 85 (2019) 112 (https://doi.org/10.2298/JSC190416112K)
V. Panić, A. Dekanski, B. Nikolic, J. Serbian Chem. Soc. 78 (2013) 2141 (https://doi.org/10.2298/JSC131031128P)
A. Y. Watson, P. A. Valberg, AIHAJ J. Sci. Occup. Environ. Heal. Saf. 62 (2001) 218 (https://doi.org/10.1080/15298660108984625)
C. M. Long, M. A. Nascarella, P. A. Valberg, Environ. Pollut. 181 (2013) 271 (https://doi.org/10.1016/j.envpol.2013.06.009)
J. Song, K. Tian, L. Ma, W. Li, S. Yao, Int. J. Heat Mass Transf. 137 (2019) 184 (https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.078)
J. Guo, C.-H. Tsou, Y. Yu, C.-S. Wu, X. Zhang, Z. Chen, T. Yang, F. Ge, P. Liu, M. R. De Guzman, Iran. Polym. J. 30 (2021) 1251 (https://doi.org/10.1007/s13726-021-00973-2)
R. Hong, Z. Zhao, J. Leng, J. Wu, J. Zhang, Compos., B 176 (2019) 107214 (https://doi.org/10.1016/j.compositesb.2019.107214)
Q. Zhang, J. Wang, B.-Y. Zhang, B.-H. Guo, J. Yu, Z.-X. Guo, Compos. Sci. Technol. 179 (2019) 106 (https://doi.org/10.1016/j.compscitech.2019.05.008)
S. Fang, S. Wu, J. Huang, D. Wang, Z. Tang, B. Guo, L. Zhang, Ind. Eng. Chem. Res. 59 (2020) 21047 (https://doi.org/10.1021/acs.iecr.0c04242)
S. Aliyeva, R. Alosmanov, I. Buniyatzadeh, G. Eyvazova, A. Azizov, A. Maharramov, Colloid Polym. Sci. 297 (2019) 1529 (https://doi.org/10.1007/s00396-019-04565-8)
S. Aliyeva, A. Maharramov, A. Azizov, R. Alosmanov, I. Buniyatzadeh, G. Eyvazova, Anal. Lett. 49 (2016) 2347 (https://doi.org/10.1080/00032719.2016.1139586)
R. Alosmanov, J. Imanova, K. Wolski, R. Ziemmermann, S. Fiejdasz, J. Przewoźnik, K. Goc, C. Kapusta, S. Zapotoczny, M. Szuwarzyński, Materials (Basel) 11 (2018) (https://doi.org/10.3390/ma11122595)
R. Alosmanov, J. Serbian Chem. Soc. 81 (2016) 42 (https://doi.org/10.2298/JSC151008042A)
A. P. S. Chauhan, K. Chawla, J. Mol. Liq. 221 (2016) 292 (https://doi.org/10.1016/j.molliq.2016.05.043)
P. Dong, T. Maneerung, W. C. Ng, X. Zhen, Y. Dai, Y. W. Tong, Y.-P. Ting, S. N. Koh, C.-H. Wang, K. G. Neoh, J. Hazard. Mater. 321 (2017) 62 (https://doi.org/10.1016/j.jhazmat.2016.08.065)
S. Yu, Z. Tang, S. Fang, S. Wu, B. Guo, Compos., A 149 (2021) 106589 (https://doi.org/10.1016/j.compositesa.2021.106589)
R. Alosmanov, K. Wolski, G. Matuschek, A. Magerramov, A. Azizov, R. Zimmermann, E. Aliyev, S. Zapotoczny, J. Therm. Anal. Calorim. 130 (2017) 799 (https://doi.org/10.1007/s10973-017-6464-4)
H.-J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, S. Lee, Sci. Rep. 9 (2019) 6338 (https://doi.org/10.1038/s41598-019-42495-1)
R. M. Sankar, T. K. Roy, T. Jana, Bull. Mater. Sci. 34 (2011) 745 (https://doi.org/10.1007/s12034-011-0190-5)
H. Miqdad, Int. J. Appl. Eng. Res. 13 (2018) 5411 (https://www.ripublication.com/ijaer18/ijaerv13n7_116.pdf)
E. Jakab, M. Omastová, J. Anal. Appl. Pyrolysis 74 (2005) 204 (https://doi.org/10.1016/j.jaap.2005.02.001)
N. Jetro Nkengafac, A. Alegria, S. Arrese-Igor, A. Edgengele, E. Eugene, J. Mat. Sci. Res. Rev. 3 (2020) 237 (https://journaljmsrr.com/index.php/JMSRR/article/view/121/241)
G. T. Mohanraj, T. Vikram, A. M. Shanmugharaj, D. Khastgir, T. K. Chaki, J. Mater. Sci. 41 (2006) 4777 (https://doi.org/10.1007/s10853-006-0065-0)
C. D. Doyle, Anal. Chem. 33 (1961) 77 (https://doi.org/10.1021/ac60169a022).