Structure and thermal stability of phosphochlorinated polybutadiene/carbon black composite synthesized via oxidative chlorophosphorylation reaction Scientific paper

Main Article Content

Nada Edres
https://orcid.org/0000-0002-2555-6852
Irada Buniyat-Zadeh
https://orcid.org/0000-0002-7218-2419
Solmaz Aliyeva
https://orcid.org/0000-0003-4345-526X
Sinan Turp
https://orcid.org/0000-0002-6645-764X
Rasim Alosmanov
https://orcid.org/0000-0001-5961-3272

Abstract

The aim of the presented work was to obtain a new type of homo­geneous composite based on an industrial polymer (polybutadiene, PB) and a well-known inexpensive filler (carbon black P-234, CB). For this purpose, the reaction of oxidative chlorophosphorylation (OxCh) was used. This makes it possible to introduce CB into the cross-linked structure of the modified poly­mer and ensure optimal distribution of the filler in it. The structure and thermal stability of the composite synthesized by the OxCh reaction were studied. Ana­lysis of the composite by Fourier-transform infrared spectroscopy indicates a uniform distribution of carbon black in the network structure of the matrix and the physical interaction of the phases of the composite. Ultraviolet-visible spec­trum data confirmed the improvement in light absorption in a wide range of the electromagnetic spectrum and the decrease in the optical band gap energy of the phosphochlorinated PB (PhPB) matrix with the addition of CB (Eg of PhPB = 3.25 eV; Eg of PhPB/CB composite = 2.28 eV). The influence of CB on the thermal stability of the PhPB matrix was studied using thermogravimetric and differential thermogravimetric analysis. After thermal analysis, the char yield for PhPB was 41 wt. %, and for PhPB/CB composite was 35.2 wt. %. Com­pared to PhPB, the increase in char yield, the decrease in maximum thermal decomposition temperature, and the high-integrated thermal decomposition temperature for the PhPB/CB composite show the improvement in the thermal stability of PhPB due to CB.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Edres, I. Buniyat-Zadeh, S. Aliyeva, S. Turp, and R. Alosmanov, “Structure and thermal stability of phosphochlorinated polybutadiene/carbon black composite synthesized via oxidative chlorophosphorylation reaction: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 79–90, Feb. 2024.
Section
Polymers

References

A. K. Sahu, K. Sudhakar, R. M. Sarviya, Case Stud. Therm. Eng. 15 (2019) 100534 (https://doi.org/10.1016/j.csite.2019.100534)

J. G. Jeon, G.-W. Hong, H.-G. Park, S. K. Lee, J.-H. Kim, T. J. Kang, Sensors 21 (2021) (https://doi.org/10.3390/s21051560)

B. Matthews, J. Li, S. Sunshine, L. Lerner, J. W. Judy, IEEE Sens. J. 2 (2002) 160 (https://doi.org/10.1109/JSEN.2002.800284)

A. N. Mallya, R. Kottokkaran, P. C. Ramamurthy, Sensors Actuators, B 201 (2014) 308 (https://doi.org/10.1016/j.snb.2014.04.056)

M. Dong, Q. Li, H. Liu, C. Liu, E. K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen, Z. Guo, Polymer 158 (2018) 381 (https://doi.org/10.1016/j.polymer.2018.11.003)

V. Khomenko, O. Butenko, O. Chernysh, V. Barsukov, M. P. Suchea, E. Koudoumas, Coatings 12 (2022) 665 (https://doi.org/10.3390/coatings12050665)

M. R. Berber, T. Fujigaya, N. Nakashima, Mater. Today Energy 10 (2018) 161 (https://doi.org/10.1016/j.mtener.2018.08.016)

H. Doğan, E. Yıldız, M. Kaya, T. Y. Inan, Bull. Mater. Sci. 36 (2013) 563 (https://doi.org/10.1007/s12034-013-0512-x)

M. Andrade-Guel, P. Y. Reyes-Rodríguez, C. J. Cabello-Alvarado, G. Cadenas-Pliego, C. A. Ávila-Orta, Nanomaterials 12 (2022) (https://doi.org/10.3390/nano12234247)

H. Gaminian, M. Montazer, Cellulose 25 (2018) 5227 (https://doi.org/10.1007/s10570-018-1929-6)

M. Faisal, J. Ahmed, J. S.Algethami, M. Jalalah, S. A. Alsareii, M. Alsaiari, F. A. Harraz, J. Ind. Eng. Chem. 121 (2023) 287 (https://doi.org/10.1016/j.jiec.2023.01.032)

L. Battista, L. Mecozzi, S. Coppola, V. Vespini, S. Grilli, P. Ferraro, Appl. Energy 136 (2014) 357 (https://doi.org/10.1016/j.apenergy.2014.09.035)

A. Verma, K. Baurai, M. R. Sanjay, S. Siengchin, Polym. Compos. 41 (2020) 338 (https://doi.org/10.1002/pc.25373)

V. Mishra, IOP Conf. Ser. Mater. Sci. Eng. 1116 (2021) 12004 (https://doi.org/10.1088/1757-899X/1116/1/012004)

F. Avilés, A. I. Oliva-Avilés, M. Cen-Puc, Adv. Eng. Mater. 20 (2018) 1701159 (https://doi.org/10.1002/adem.201701159)

Carbon Black Science and Technology, 2nd ед., J.-B. Donnet, ed., Second Edi Routledge, New York, 1993

O. Kochkodan, V. Maksin, J. Serb. Chem. Soc. 85 (2019) 112 (https://doi.org/10.2298/JSC190416112K)

V. Panić, A. Dekanski, B. Nikolic, J. Serbian Chem. Soc. 78 (2013) 2141 (https://doi.org/10.2298/JSC131031128P)

A. Y. Watson, P. A. Valberg, AIHAJ J. Sci. Occup. Environ. Heal. Saf. 62 (2001) 218 (https://doi.org/10.1080/15298660108984625)

C. M. Long, M. A. Nascarella, P. A. Valberg, Environ. Pollut. 181 (2013) 271 (https://doi.org/10.1016/j.envpol.2013.06.009)

J. Song, K. Tian, L. Ma, W. Li, S. Yao, Int. J. Heat Mass Transf. 137 (2019) 184 (https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.078)

J. Guo, C.-H. Tsou, Y. Yu, C.-S. Wu, X. Zhang, Z. Chen, T. Yang, F. Ge, P. Liu, M. R. De Guzman, Iran. Polym. J. 30 (2021) 1251 (https://doi.org/10.1007/s13726-021-00973-2)

R. Hong, Z. Zhao, J. Leng, J. Wu, J. Zhang, Compos., B 176 (2019) 107214 (https://doi.org/10.1016/j.compositesb.2019.107214)

Q. Zhang, J. Wang, B.-Y. Zhang, B.-H. Guo, J. Yu, Z.-X. Guo, Compos. Sci. Technol. 179 (2019) 106 (https://doi.org/10.1016/j.compscitech.2019.05.008)

S. Fang, S. Wu, J. Huang, D. Wang, Z. Tang, B. Guo, L. Zhang, Ind. Eng. Chem. Res. 59 (2020) 21047 (https://doi.org/10.1021/acs.iecr.0c04242)

S. Aliyeva, R. Alosmanov, I. Buniyatzadeh, G. Eyvazova, A. Azizov, A. Maharramov, Colloid Polym. Sci. 297 (2019) 1529 (https://doi.org/10.1007/s00396-019-04565-8)

S. Aliyeva, A. Maharramov, A. Azizov, R. Alosmanov, I. Buniyatzadeh, G. Eyvazova, Anal. Lett. 49 (2016) 2347 (https://doi.org/10.1080/00032719.2016.1139586)

R. Alosmanov, J. Imanova, K. Wolski, R. Ziemmermann, S. Fiejdasz, J. Przewoźnik, K. Goc, C. Kapusta, S. Zapotoczny, M. Szuwarzyński, Materials (Basel) 11 (2018) (https://doi.org/10.3390/ma11122595)

R. Alosmanov, J. Serbian Chem. Soc. 81 (2016) 42 (https://doi.org/10.2298/JSC151008042A)

A. P. S. Chauhan, K. Chawla, J. Mol. Liq. 221 (2016) 292 (https://doi.org/10.1016/j.molliq.2016.05.043)

P. Dong, T. Maneerung, W. C. Ng, X. Zhen, Y. Dai, Y. W. Tong, Y.-P. Ting, S. N. Koh, C.-H. Wang, K. G. Neoh, J. Hazard. Mater. 321 (2017) 62 (https://doi.org/10.1016/j.jhazmat.2016.08.065)

S. Yu, Z. Tang, S. Fang, S. Wu, B. Guo, Compos., A 149 (2021) 106589 (https://doi.org/10.1016/j.compositesa.2021.106589)

R. Alosmanov, K. Wolski, G. Matuschek, A. Magerramov, A. Azizov, R. Zimmermann, E. Aliyev, S. Zapotoczny, J. Therm. Anal. Calorim. 130 (2017) 799 (https://doi.org/10.1007/s10973-017-6464-4)

H.-J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, S. Lee, Sci. Rep. 9 (2019) 6338 (https://doi.org/10.1038/s41598-019-42495-1)

R. M. Sankar, T. K. Roy, T. Jana, Bull. Mater. Sci. 34 (2011) 745 (https://doi.org/10.1007/s12034-011-0190-5)

H. Miqdad, Int. J. Appl. Eng. Res. 13 (2018) 5411 (https://www.ripublication.com/ijaer18/ijaerv13n7_116.pdf)

E. Jakab, M. Omastová, J. Anal. Appl. Pyrolysis 74 (2005) 204 (https://doi.org/10.1016/j.jaap.2005.02.001)

N. Jetro Nkengafac, A. Alegria, S. Arrese-Igor, A. Edgengele, E. Eugene, J. Mat. Sci. Res. Rev. 3 (2020) 237 (https://journaljmsrr.com/index.php/JMSRR/article/view/121/241)

G. T. Mohanraj, T. Vikram, A. M. Shanmugharaj, D. Khastgir, T. K. Chaki, J. Mater. Sci. 41 (2006) 4777 (https://doi.org/10.1007/s10853-006-0065-0)

C. D. Doyle, Anal. Chem. 33 (1961) 77 (https://doi.org/10.1021/ac60169a022).