Deep eutectic solvents formed by pharmaceutical ingredients and their potential influences on solid preparations Scientific paper

Main Article Content

Sara Toufouki
Ahmad Ali
Youmo Wang
Rui Li
https://orcid.org/0009-0000-4512-3109
Yu Cao
https://orcid.org/0009-0006-3726-0289
Shun Yao
https://orcid.org/0000-0002-0250-1656

Abstract

Some active pharmaceutical ingredients (APIs) and excipients can form deep eutectic solvents (DESs), which will lead to severe defects in solid preparations. This work first prepared related typical DESs by mixing APIs and excipients from marketable drugs. Then two different types of the binary eutectic mixtures were investigated, which were composed of menthol (HBD) and citric acid (HBA), ME/CA, as well as phenyl salicylate (HBA) and ben­zoic acid (HBD), Salol/BA. These binary mixtures were applied to investigate their possible effects on capsules and tablets, which could be liquefaction or the stickiness of the solid formulations. The comprehensive characterizations and studies on phase behaviours of the binary mixtures were carried out, and the spectral analysis confirmed the formation of the eutectic liquids from indi­vi­dual components. Furthermore, the binary mixtures have increased the tablet strength when increasing the compression force, leading to the stickiness of powders during pressing. Moreover, the capsules were softened by the exist­ence of DESs. After morphological observation and quantitative analysis, the cor­responding suggestions and countermeasures were provided in the conclusions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Toufouki, A. Ali, Y. Wang, R. Li, Y. Cao, and S. Yao, “Deep eutectic solvents formed by pharmaceutical ingredients and their potential influences on solid preparations: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 1, pp. 107–121, Feb. 2024.
Section
Chemical Engineering

Funding data

References

A. R. C. Duarte, A. S. D. Ferreira, S. Barreiros, E. Cabrita, R. L. Reis, A. Paiva, Eur. J. Pharm. Biopharm.114 (2017) 296 (https://doi.org/10.1016/j.ejpb.2017.02.003)

B. S. Đorđević, D. Z. Troter, V. B. Veljković, M. L. J. Kijevčanin, I. R. Radović, Z. B. Todorović, J. Serb. Chem. Soc. 85 (2020) 1303 (https://doi.org/10.2298/JSC200425050D)

F. Al-Akayleh, R. M. Khalid, D. Hawash, E. Al-Kaissi, I. S. Al-Adham, N. Al-Muhtaseb, M. Jaber, M. Al-Remawi, P. J. Collier, Lett. Appl. Microbiol. 75 (2022) 607 (https://doi.org/10.1111/lam.13699)

M. Patrycja, P. Andrzej, B. Grzegorz, J. Chromatogr., A 1570 (2018) 28 (https://doi.org/10.1016/j.chroma.2018.07.070)

G. Q. Zhong, R. R. Jia, Y. Q. Jia, Adv. Mater. Res. 549 (2012) 292 (https://doi.org/10.4028/www.scientific.net/AMR.549.292)

M. Phutke, A. R. Raichur, A. K. Suresh, Ind. Eng. Chem. Res. 61 (2022) 11636 (https://doi.org/10.1021/acs.iecr.2c00513)

M. M. Santos, L. C. Branco, Pharmaceut. 12 (2020) 909 (https://doi.org/10.3390/pharmaceutics12100909)

Y. Liu, Y. Wu, J. Liu, W. Wang, Q. Yang, G. Yang, Int. J. Pharmaceut. 622 (2022) 121811 (https://doi.org/10.1016/j.ijpharm.2022.121811)

M. H. Zainal-Abidin, M. Hayyan, G. C. Ngoh, W. F. Wong, C. Y. Looi, J. Control. Rel. 316 (2019) 168 (https://doi.org/10.1016/j.jconrel.2019.09.019)

A. Gutiérrez, S. Aparicio, M. Atilhan, Phys. Chem. 21 (2019) 10621 (https://doi.org/10.1039/C9CP01408J)

H. Shekaari, M. T. Zafarani-Moattar, M. Mokhtarpour, J. Iran. Chem. Soc. 19 (2022) 4275 (https://doi.org/10.1007/s13738-022-02602-y)

Y. Liu, X. Wei, J. Chen, Y. L. Yu, J. H. Wang, H. Qiu, Anal. Chem. 94 (2022) 5970 (https://doi.org/10.1021/acs.analchem.2c00428)

S. Chattoraj, P. Daugherity, T. McDermott, A. Olsofsky, W. J. Roth, M. Tobyn, J. Pharm. Sci. 107 (2018) 2267 (https://doi.org/10.1016/j.xphs.2018.04.029)

D. Setyawan, D. Isadiartuti, S. D. Betari, D. P. Paramita, Indones. J. Pharm.27 (2016) 28 (https://doi.org/10.14499/indonesianjpharm27iss1pp28)

M. Zdanowicz, K. Wilpiszewska, T. Spychaj, Carbohyd. Polym. 200 (2018) 361 (https://doi.org/10.1016/j.carbpol.2018.07.078)

M.H.Shafie, R.Yusof, C.Y.Gan, J. Mol. Liq. 288 (2019) 111081 (https://doi.org/10.1016/j.molliq.2019.111081)

Q. Zhang, K. D. O. Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 41 (2012) 7108 (https://doi.org/10.1039/C2CS35178A)

K. A. Omar, R. Sadeghi, J. Mol. Liq. 360 (2022) 119524 (https://doi.org/10.1016/j.molliq.2022.119524)

U. R. Kapadi, D. G. Hundiwale, N. B. Patil, M. K. Lande, P. R. Patil, Fluid Phase Equilib. 192 (2001) 63 (https://doi.org/10.1016/S0378-3812(01)00621-5)

H. Shekaari, M. T. Zafarani-Moattar, M. Mokhtarpour, S. Faraji, J. Mol. Liq. 289 (2019) 111077 (https://doi.org/10.1016/j.molliq.2019.111077)

M. Bi, S. J. Hwang, K. R. Morris, Thermochim. Acta 404 (2003) 213 (https://doi.org/10.1016/S0040-6031(03)00185-0)

S. Swaminathan, B. Ganapathy, M. Wang, F. Wang, J. Wooding, J. Frankel, S. Chiruvolu, S. Rengarajan, P. Narwankar, Powder Technol. 425 (2023) 118525 (https://doi.org/10.1016/j.powtec.2023.118525)

R. N. Dave, L. Beach, M. P.Mullarney, C. Ghoroi, in Proceedings of AIChE Annual Meeting (2010), 2010 Annual Meeting, Food, Pharmaceutical & Bioengineering Division, New York (https://www.aiche.org/conferences/aiche-annual-meeting/2010/proceeding/paper/444f-novel-continuous-device-surface-modification-cohesive-pharmaceutical-powders-dry-coating-nano).