Cost-effective method of simultaneous removal of copper and phosphate on environmentally friendly nanomaterial Scientific paper

Main Article Content

Jovana Jokić Govedarica
https://orcid.org/0000-0002-4271-0129
Dragana Tomašević Pilipović
https://orcid.org/0000-0002-8275-3297
Vesna Gvoić
https://orcid.org/0000-0002-4434-3609
Đurđa Kerkez
Anita Leovac Maćerak
https://orcid.org/0000-0002-3310-1225
Nataša Slijepčević
https://orcid.org/0000-0002-3866-1205
Milena Bečelić Tomin

Abstract

Environmentally friendly and economically viable methods are essential in the selection of materials and techniques for the synthesis of nano-zero-valent iron. Plants, with their high polyphenol content and antioxidant capacity, have found application in eco-friendly synthesis processes. The defi­nitive screening design (DSD) monitored four key process parameters for the concurrent removal of copper and phosphate: copper concentration (ranging from 1 to 9 mg L-1), phosphate concentration (ranging from 1 to 9 mg L-1), initial pH values (ranging from 2 to 10), and the dosage of nano-zero-valent iron (ranging from 2 to 16 mL). The analysis results provide valuable insights into the significant individual factors influencing the process, along with the potential for their interactions. The model also proposes process optimization to attain maximum removal efficiency, and subsequent verification confirmed its superiority among the alternatives. Mechanisms such as sorption, reduction, complexation, electrostatic attraction, and ligand exchange play pivotal roles in the effective removal of copper and phosphate using nano-zero-valent iron. In summary, this research yields several benefits: the utilization of environ­ment­ally sustainable materials, a substantial reduction in experimental complexity, coupled with the ease of the entire procedure, simultaneous and highly efficient copper and phosphate removal, favorable pH levels and, notably, no require­ment for additional treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Jokić Govedarica, “Cost-effective method of simultaneous removal of copper and phosphate on environmentally friendly nanomaterial: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 4, pp. 581–595, Apr. 2024.
Section
Environmental Chemistry

Funding data

References

M. M. Tarekegn, A. M. Hiruy, A. H. Dekebo, RSC Adv. 11 (2021) 18539 (https://doi.org/10.1039/d1ra01427g)

S. Poguberović, PhD Thesis, University in Novi Sad, 2017 (https://nardus.mpn.gov.rs/handle/123456789/6294) (in Serbian)

A. M. Abdelfatah, M. Fawzy, A. S. Eltaweil, M. E. El-Khouly, ACS Omega I6 (2021) 25397 (https://doi.org/10.1021/acsomega.1c03355)

B. Sutcliffe, A. A. Chariton, A. J. Harford, G.C. Hose, P. Greenfield,D. J. Midgley, I. T. Paulsen, Ecology 34 (2018) 28 (https://doi.org/10.1016/j.funeco.2018.03.003)

J. Yang, Y. Xie, K. Jeppe, S. Long, V. Pettigrove, X. Zhang, Environ. Toxicol. Chem. 37 (2017) 599 (https://doi.org/doi:10.1002/etc.3980)

Y. H. Zhang, F. Q. Liu, C. Q. Zhu, X. P. Zhang, M. M. Wei, F. H. Wang, C. Ling, A. M. Li, J. Hazard. Mater 329 (2017) 290 (https://doi.org/10.1016/j.jhazmat.2017.01.054)

O. Eljamal, I. P. Thompson, I. Maamoun, T. Shubair, E. Kareman, K. Lueangwattanapong, Y. Sugihara, J. Mol. Liq. 299 (2020) 112144 (https://doi.org/10.1016/j.molliq.2019.112144)

S. Li, W. Wang, F. Liang, W. X. Zhang, J. Hazard. Mater. 16 (2017) 163 (https://doi.org/10.1016/j.jhazmat.2016.01.032)

J. Suazo-Hernández, P. Sepúlveda, L. Cáceres-Jensen, J. Castro-Rojas, P. Poblete-Grant, N. Bolan, M. L. Mora, Nanomaterials 13 (2023) 399 (https://doi.org/10.3390/nano13030399)

V. Gvoić, M. Prica, M. Turk Sekulić, S. Pap, O. Paunović, A. Kulić Mandić, M. Bečelić-

-Tomin, Dj. Vukelić, Dj. Kerkez, Environ. Technol. (2022) (https://doi.org/10.1080/09593330.2022.2154082)

H. Boulika, M. El Hajam, M. H. Nabih, I. Riffi Karim, N. Idrissi Kandri, A. Zerouale, Mater. Today: Proc. 72 (2023) 336 (https://doi.org/10.1016/j.matpr.2022.07.358)

J. Jokić Govedarica, D. Tomašević Pilipović, V. Gvoić, Đ. Kerkez, A. Leovac Maćerak, N. Slijepčević, M. Bečelić-Tomin, Water Sanit. Technol. 2 (2022) 13 (502.51:504.5:546.48 546.72:502.174)

B. Jones, C. J. Nachtsheim, J. Qual. Technol. 45 (2017) 121 (https://doi.org/10.1080/00224065.2013.11917921)

D. Movrin, O. Luzanin, V. Guduric, Rapid Prototyping J. 25 (2018) 653 (https://doi.org/10.1108/RPJ-07-2018-0177)

A. Šućurović, PhD Thesis, University in Novi Sad, 2017 (https://nardus.mpn.gov.rs/handle/123456789/8836) (in Serbian)

T. Tosco, P. M. Papini, C. V. Cruz, R. Sethi, J. Clean. Prod. 77 (2014) 10 (https://doi.org/10.1016/j.jclepro.2013.12.026)

T. Pasinszki, M. Krebsz, Nanomaterials 10 (2020) 917 (https://doi.org/10.3390/nano10050917)

A. O. Dada, F. A. Adekola, E. O. Odebunmi, A. S. Ogunlaja, O. S. Bello, Sci. Rep. 11 (2021) 16454 (https://doi.org/10.1038/s41598-021-95090-8)

S. Azordeh Molkabadi, M. Asadi, Pollution 9 (2023) 1074 (https://doi.org/10.22059/poll.2023.349294.1640)

A. Leovac Maćerak, A. Kulić Mandić, V. Pešić, D. Tomašević Pilipović, M. Bečelić-

-Tomin, Đ. Kerkez, Molecules 28 (2023) 1425 (https://doi.org/10.3390/molecules28031425).

Most read articles by the same author(s)