Central composite design (CCD) and artificial neural network-based Levenberg–Marquardt algorithm (ANN–LMA) for the extraction of lanasyn black by cloud point extraction Scientific paper

Main Article Content

Afaf Amara-Rekkab
https://orcid.org/0000-0002-0014-3066

Abstract

The lanasyn black is among the most often used in manufacturing and is challenging to take out during the treatment of wastewaters from textile industry. The cloud point extraction was used for their elimination from an aqueous solution. The multivariable process parameters have been indepen­dently optimized using the central composite design and the Levenberg–Mar­quardt algorithm-based artificial neural network for the highest yield of the ext­raction of lanasyn black via the cloud point extraction. The CCD forecasts the output maximum of 97.01 % under slightly altered process parameters. Still, the ANN–LMA model predicts the extraction yield (99.98 %) using 1.04 g of KNO3, the beginning pH of solution 8.99, the initial content of lanasyn black 24.57 ppm and 0.34 mass % of Triton X-100. With the coefficients of deter­min­ation of 0.997 and 0.9777, the most recent empirical verification of the model mentioned above predictions using CCD and ANN–LMA is determined to be satisfactory.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Amara-Rekkab, “Central composite design (CCD) and artificial neural network-based Levenberg–Marquardt algorithm (ANN–LMA) for the extraction of lanasyn black by cloud point extraction: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 9, pp. 1227–1240, Sep. 2024.
Section
Environmental Chemistry

References

D. A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16 (2019) 1193 (https://doi.org/10.1007/s13762-018-2130-z)

B. K. Nandi, A. Goswami, M. K. Purkait, Appl. Clay. Sci. 42 (2009) 583 (https://doi.org/10.1016/j.clay.2008.03.015)

I. G. Krasnoborodko, Destructive wastewater treatment from dyes, L: Chemistry, 1988

M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, M. K. Purkait, Desalination 281 (2011) 226 (https://doi.org/10.1016/j.desal.2011.07.068)

V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. D. Ploeg, S. E. A. T. M. van de Zee, C. J. Ritsema, Int. Soil Water Conserv. Res. 3 (2015) 57 (https://doi.org/10.1016/j.iswcr.2015.03.002)

N. E.Djebbari, A. Amara, A. Didi, M. A. Didi, Sci. Study Res. Chem. Chem. Eng., Biotech., Food Ind. 23 (2022) 333 (https://pubs.ub.ro/dwnl.php?id=CSCC6202204V04S01A0005)

H. Chandarana, P. Senthil Kumar, M. Srinivasan, M. Anil Kumar, Chemosphere 285 (2021) 131480 (https://doi.org/10.1016/j.chemosphere.2021.131480)

M. K. Dahri, M. R. R. Kooh, L. B.L. Lim, Alex. Eng. J. 54 (2015) 1253 (https://doi.org/10.1016/j.aej.2015.07.005)

E. Brillas, E.Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domenech, J. Casado, Appl. Catal., B 16 (1998) 31 (https://doi.org/10.1016/S0926-3373(97)00059-3)

P. Liang, J. Li, X. Yang, Microchim Acta 152 (2005) 47 (https://doi.org/10.1007/s00604-005-0415-7)

D. Snigur, E. A. Azooz, O. Zhukovetska, O. Guzenko, W. Mortada, TrAC, Trends Anal. Chem. 164 (2023) 117113 (https://doi.org/10.1016/j.trac.2023.117113)

R. Halko, I. Hagarová, V. Andruch, J. Chromatogr., A 1701(2023) 464053 (https://doi.org/10.1016/j.chroma.2023.464053)

H. S. Ferreira, M. A. Bezerra, S.L.C. Ferreira, Microchim. Acta 154 (2006) 163 (https://doi.org/10.1007/s00604-005-0475-8)

W. R. Melchert, F. R. P. Rocha, Rev. Anal. Chem. 35 (2016) 41 (https://doi.org/10.1515/revac-2015-0022)

J. Yongsheng, W. Le, L. Ruihong, W. Haohao, S. Shuhui, C. Mingzhuo, ACS Omega 6 (2021) 13508 (https://doi.org/10.1021/acsomega.1c01768)

M.N. Jones, Int. J. Pharm. 177 (1999) 137 (https://doi.org/10.1016/s0378-5173(98)00345-7)

A. Amara-Rekkab, M.A. Didi, Desalin. Water Treat. 281 (2022) 186 (https://doi.org/10.5004/dwt.2023.29147)

N. Sato, M. Morin, H. Itabashi, Talanta 117 (2013) 376 (https://doi.org/10.1016/j.talanta.2013.08.025)

A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Dalton Trans. 44 (2015) 14707 (https://doi.org/10.1039/C5DT01504A)

G. Hanrahan, K. Lu, Crit. Rev. Anal. Chem. 36 (2006) 141 (https://doi.org/10.1080/10408340600969478)

M. Boulahbal, M. A. Malouki, M. Canle, Z. Redouane-Salah, S. Devanesan, M. S. AlSalhi, M. Berkani, Chemosphere 306 (2022) 135516 (https://doi.org/10.1016/j.chemosphere.2022.135516)

H. Ucbeyiay, Fuel Process. Technol. 106 (2013) 1 (https://doi.org/10.1016/j.fuproc.2012.09.020)

G. E. B. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters, 2nd ed., Wiley-Interscience, Hoboken, NJ, 1978

T. Mehmood, A. Ahmed, A. Asif, A. M. Sheeraz, M. A. Sandhu, Food Chem. 253 (2018) 179 (https://doi.org/10.1016/j.foodchem.2018.01.136)

S.I.S. Al-Hawary, K. Azhar, S. A. Sherzod, A.K. Kareem, K. A. Alkhuzai, R. R. M. Parra, A. H. Amini, T. Alawsi, M. Abosaooda, M. Dejaverdi, Alex. Eng. J. 74 (2023) 737 (https://doi.org/10.1016/j.aej.2023.05.066)

K. Behera, H. Meena, S. Chakraborty, B.C. Meikap, Int. J. Min. Sci. Technol. 28 (2018) 621 (https://doi.org/10.1016/j.ijmst.2018.04.014)

M. Maleki‑Kakelar, A. Aghaeinejad‑Meybodi, S. Sanjideh, M. J. Azarhoosh, Environ. Proc. 9 (2022) 7 (https://doi.org/10.1007/s40710-022-00564-0)

P. Mondal, A. K. Sadhukhan, A. Ganguly, P. Gupta, 3 Biotech 11 (2021) 28 (https://doi.org/10.1007/s13205-020-02553-2)

N. Teslić, N. Bojanić, D. Rakić, A. Takači, Z. Zeković, A. Fišteš, M. Bodroža-Solarov, B. Pavlić, Chem. Eng. Process. 143 (2019) 107634 (https://doi.org/10.1016/j.cep.2019.107634)

B. Jiang, F. Zhang, Y. Sun, X. Zhou, J. Dong, L. Zhang, J. Taiwan Inst. Chem. Eng. 45 (2014) 2217 (https://doi.org/10.1016/j.jtice.2014.03.020)

A. Çelekli, H. Bozkurt, F. Geyik, Bioresour. Technol. 129 (2013) 396 (https://doi.org/10.1016/j.biortech.2012.11.085)

A. Smaali, M. Berkani, F. Merouane, V.T. Le, Y. Vasseghian, N. Rahim, M. Kouachi, Chemosphere 266 (2021) 129158 (https://doi.org/10.1016/j.chemosphere.2020.129158)

K. Oukebdane, R. Semmoud, M.A. Didi, Desalin. Water Treat. 247 (2022) 272 (https://doi.org/10.5004/dwt.2022.28039)

M. Berkani, M. Bouhelassa, M. K. Bouchareb, Arab. J. Chem. 12 (2019) 3054 (https://doi.org/10.1016/j.arabjc.2015.07.004)

D. Bas, I. Boya, J. Food Eng. 78 (2007) 836 (https://doi.org/10.1016/j.jfoodeng.2005.11.024)

M. Pravitha, M. R. Manikantan, V. Ajesh Kumar, S. Beegum, R. Pandiselvam, LWT 146 (2021) 111441 (https://doi.org/10.1016/j.lwt.2021.111441)

J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd ed., Morgan Kaufmann, 2012.

E. Bello, T. Ogedengbe, M. Khumbulani, I. Daniyan, Procedia CIRP 89 (2020) 59 (https://doi.org/10.1016/j.procir.2020.05.119)

R. Pandiselvam, M. R. Manikantan, S. Sunoj, S. Sreejith, S. Beegum, J. Food Process Eng. 42 (2019) e12981 (https://doi.org/10.1111/jfpe.12981)

S. Youssefi, Z. Emam-Djomeh, S. M. Mousavi, Drying Technol. 27 (2009) 910 (https://doi.org/10.1080/07373930902988247)

V. Ajesh Kumar, S. Prem Prakash, M. Pravitha, H. Muzaffar, M. Shukadev, V. Prithviraj, V. Deepak Kumar, Food Pack. Shelf Life 31 (2022) 100778 (https://doi.org/10.1016/j.fpsl.2021.100778)

A. J. Sisi, A. Khataee, M. Fathinia, B. Vahid, Y. Orooji, J. Mol. Liq. 316 (2020) 113801 (https://doi.org/10.1016/j.molliq.2020.113801)

Z. Jun, C. Leland, S. Dongyi, W. Y. Zhan, Appl. Energy 345 (2023) 121373 (https://doi.org/10.1016/j.apenergy.2023.121373).