Modelling a cyclic staircase voltammetry of two electron transfers coupled by a chemical reaction on a rotating disk electrode Scientific paper
Main Article Content
Abstract
Two electrode reactions that are coupled by a chemical reaction are called an ECE mechanism. The model of this mechanism which has an unstable intermediate is developed for staircase voltammetry on the rotating disk electrode. It is assumed that both electrode reactions are fast and reversible and that the chemical reaction may appear to be of the second order and reversible. The influence of the concentration of an electro-inactive component of the chemical reaction is investigated, and the conditions under which the reaction turns into the first order one, and becomes totally irreversible, are reported.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
R. S. Nicholson, I. Shain, Anal. Chem. 37 (1965) 190 (https://doi.org/10.1021/ac60221a003)
G. S. Alberts, I. Shain, Anal. Chem. 35 (1963) 1859 (https://doi.org/10.1021/ac60205a019)
Š. Komorsky-Lovrić, M. Lovrić, Collect. Czech. Chem. Commun. 72 (2007) 1398 (https://doi.org/10.1135/cccc20071398)
P. Sanecki, K. Kaczmarski, J. Electroanal. Chem. 471 (1999) 14 (https://doi.org/10.1016/S0022-0728(99)00243-0)
P. Sanecki, P. Skital, K. Kaczmarski, Electroanalysis 18 (2006) 981 (https://doi.org/10.1002/elan.200603487)
S. W. Feldberg, Lj. Jeftić, J. Phys. Chem. 76 (1972) 2439 (https://doi.org/10.1021/j100661a017)
G. J. Wilson, C. Y. Lin, R. D. Webster, J. Phys. Chem., B 110 (2006) 11540 (https://doi.org/10.1021/jp0604802)
R. N. Adams, M. D. Hawley, S. W. Feldberg, J. Phys. Chem. 71 (1967) 851 (https://doi.org/10.1021/j100863a011)
D. Nematollahi, S. M. Golabi, J. Electroanal. Chem. 481 (2000) 208 (https://doi.org/10.1016/S0022-0728(99)00500-8)
Y. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Thin Solid Films 497 (2006) 270 (https://doi.org/10.1016/j.tsf.2005.10.048)
P. T. Sanecki, C. Amatore, P. M. Skital, J. Electroanal. Chem. 546 (2003) 109 ()https://doi.org/10.1016/S0022-0728(03)00138-4
P. T. Sanecki, P. M. Skital, Electrochim. Acta 53 (2008) 7711 (https://doi.org/10.1016/j.electacta.2008.05.023)
R. Gulaboski, V. Mirčeski, I. Bogeski, M. Hoth, J. Solid State Electrochem. 16 (2012) 2315 (https://doi.org/10.1007/s10008-011-1397-5)
S. O. Engblom, J. C. Myland, K. B. Oldham, Anal. Chem. 66 (1994) 3182 (https://doi.org/10.1021/ac00091a029)
M. D. Hawley, S. W. Feldberg, J. Phys. Chem. 70 (1966) 3459 (https://doi.org/10.1021/j100883a015)
C. Amatore, J. M. Saveant, J. Electroanal. Chem. 86 (1978) 227 (https://doi.org/10.1016/S0022-0728(78)80371-4)
J. Galvez, A. Molina, R. Saura, F. Martinez, J. Electroanal. Chem. 127 (1981) 17 (https://doi.org/10.1016/S0022-0728(81)80464-0)
B. Kastening, Anal. Chem. 41 (1969) 1142 (https://doi.org/10.1021/ac60277a016)
H. R. Sobel, D. E. Smith, J. Electroanal. Chem. 26 (1970) 271 (https://doi.org/10.1016/S0022-0728(70)80310-2)
M. Mastragostino, L. Nadjo, J. M. Saveant, Electrochim. Acta 13 (1968) 721 (https://doi.org/10.1016/0013-4686(68)85007-8)
C. Amatore, J. M. Saveant, J. Electroanal. Chem. 85 (1977) 27 (https://doi.org/10.1016/S0022-0728(77)80150-2)
R. S. Nicholson, I. Shain, Anal. Chem. 37 (1965) 178 (https://doi.org/10.1021/ac60221a002)
M. A. Mann, J. C. Helfrick Jr, L. A. Bottomley, J. Electrochem. Soc. 163 (2016) H3101 (http://dx.doi.org/10.1149/2.0151604jes)
A. B. Miles, R. G. Compton, J. Electroanal. Chem. 499 (2001) 1 (https://doi.org/10.1016/S0022-0728(00)00460-5)
J. J. O'Dea, K. Wikiel, J. Osteryoung, J. Phys. Chem. 94 (1990) 3628 (https://doi.org/10.1021/j100372a049)
A. B. Miles, R. G. Compton, J. Phys. Chem., B 104 (2000) 5331 (https://doi.org/10.1021/jp0006882)
Š. Komorsky-Lovrić, M. Lovrić, To Chem. J. 2 (2019) 142 (http://purkh.com/index.php/tochem)
R. Gulaboski, V. Markovski, Zh. Jihe, J. Solid State Electrochem. 20 (2016) 3229 (https://doi.org/10.1007/s10008-016-3230-7)
E. Laborda, J. M. Gomez-Gil, A. Molina, Phys. Chem. Chem. Phys. 19 (2017) 16464 (https://doi.org/10.1039/c7cp02135f)
C. Batchelor-McAuley, Q. Li, S. M. Dapin, R. G. Compton, J. Phys. Chem., B 114 (2010) 4094 (https://doi.org/10.1021/jp1008187)
D. Menshykau, C. Batchelor-McAuley, R. G. Compton, J. Electroanal. Chem. 651 (2011) 118 (https://doi.org/10.1016/j.jelechem.2010.11.024)
G. J. Wilson, C. Y. Lin, R. D. Webster, J. Phys. Chem., B 110 (2006) 11540 (https://doi.org/10.1021/jp0604802)
H.Balslev, D. Britz, Acta Chem. Scand. 46 (1992) 949
R. Saravanakumar, P. Pirabaharan, L. Rajendran, Electrochim. Acta 313 (2019) 441 (https://doi.org/10.1016/j.electacta.2019.05.033)
X. Y. Liu, Y. P. Liu, Z. W. Wu, Thermal Sci. 26 (2022) 2459 (https://doi.org/10.2298/TSCI2203459L)
R. Umadevi, J. Visuvasam, K. Venugopal, L. Rajendran, 1st Int. Conf. Math. Tech. Appl. AIP Conf. Proc. 2277 (2020) 130013 (https://doi.org/10.1063/5.0025822)
M. Lovrić, Turk. J. Chem. 46 (2022) 1226 (https://doi.org/10.55730/1300-0527.3429)
J. Strutwolf, W. W. Schoeller, Electroanalysis 8 (1996) 1034 (https://doi.org/10.1002/elan.1140081111)
M. Lovrić, J. Serb. Chem. Soc. 53 (1988) 211.