Modelling a cyclic staircase voltammetry of two electron transfers coupled by a chemical reaction on a rotating disk electrode Scientific paper

Main Article Content

Milivoj Lovrić
https://orcid.org/0000-0002-6421-1398

Abstract

Two electrode reactions that are coupled by a chemical reaction are called an ECE mechanism. The model of this mechanism which has an unstable intermediate is developed for staircase voltammetry on the rotating disk electrode. It is assumed that both electrode reactions are fast and reversible and that the chemical reaction may appear to be of the second order and rever­sible. The influence of the concentration of an electro-inactive component of the chemical reaction is investigated, and the conditions under which the react­ion turns into the first order one, and becomes totally irreversible, are reported.

Downloads

Metrics

PDF views
312
Jul 07 '24Jul 10 '24Jul 13 '24Jul 16 '24Jul 19 '24Jul 22 '24Jul 25 '24Jul 28 '24Jul 31 '24Aug 01 '245.0
|

Article Details

How to Cite
[1]
M. Lovrić, “Modelling a cyclic staircase voltammetry of two electron transfers coupled by a chemical reaction on a rotating disk electrode: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 6, pp. 891–905, Jul. 2024.
Section
Electrochemistry
Author Biography

Milivoj Lovrić, Divkovićeva 13, Zagreb

ORCID ID: 0000-0002-6421-1398

Sir!

Please, note that I have changed e-mail address. The former one (mlovric@irb.hr) is no more valid. Also, I am not affiliated to the Ruđer Bošković Institute any more, but I am working from home.

References

R. S. Nicholson, I. Shain, Anal. Chem. 37 (1965) 190 (https://doi.org/10.1021/ac60221a003)

G. S. Alberts, I. Shain, Anal. Chem. 35 (1963) 1859 (https://doi.org/10.1021/ac60205a019)

Š. Komorsky-Lovrić, M. Lovrić, Collect. Czech. Chem. Commun. 72 (2007) 1398 (https://doi.org/10.1135/cccc20071398)

P. Sanecki, K. Kaczmarski, J. Electroanal. Chem. 471 (1999) 14 (https://doi.org/10.1016/S0022-0728(99)00243-0)

P. Sanecki, P. Skital, K. Kaczmarski, Electroanalysis 18 (2006) 981 (https://doi.org/10.1002/elan.200603487)

S. W. Feldberg, Lj. Jeftić, J. Phys. Chem. 76 (1972) 2439 (https://doi.org/10.1021/j100661a017)

G. J. Wilson, C. Y. Lin, R. D. Webster, J. Phys. Chem., B 110 (2006) 11540 (https://doi.org/10.1021/jp0604802)

R. N. Adams, M. D. Hawley, S. W. Feldberg, J. Phys. Chem. 71 (1967) 851 (https://doi.org/10.1021/j100863a011)

D. Nematollahi, S. M. Golabi, J. Electroanal. Chem. 481 (2000) 208 (https://doi.org/10.1016/S0022-0728(99)00500-8)

Y. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Thin Solid Films 497 (2006) 270 (https://doi.org/10.1016/j.tsf.2005.10.048)

P. T. Sanecki, C. Amatore, P. M. Skital, J. Electroanal. Chem. 546 (2003) 109 ()https://doi.org/10.1016/S0022-0728(03)00138-4

P. T. Sanecki, P. M. Skital, Electrochim. Acta 53 (2008) 7711 (https://doi.org/10.1016/j.electacta.2008.05.023)

R. Gulaboski, V. Mirčeski, I. Bogeski, M. Hoth, J. Solid State Electrochem. 16 (2012) 2315 (https://doi.org/10.1007/s10008-011-1397-5)

S. O. Engblom, J. C. Myland, K. B. Oldham, Anal. Chem. 66 (1994) 3182 (https://doi.org/10.1021/ac00091a029)

M. D. Hawley, S. W. Feldberg, J. Phys. Chem. 70 (1966) 3459 (https://doi.org/10.1021/j100883a015)

C. Amatore, J. M. Saveant, J. Electroanal. Chem. 86 (1978) 227 (https://doi.org/10.1016/S0022-0728(78)80371-4)

J. Galvez, A. Molina, R. Saura, F. Martinez, J. Electroanal. Chem. 127 (1981) 17 (https://doi.org/10.1016/S0022-0728(81)80464-0)

B. Kastening, Anal. Chem. 41 (1969) 1142 (https://doi.org/10.1021/ac60277a016)

H. R. Sobel, D. E. Smith, J. Electroanal. Chem. 26 (1970) 271 (https://doi.org/10.1016/S0022-0728(70)80310-2)

M. Mastragostino, L. Nadjo, J. M. Saveant, Electrochim. Acta 13 (1968) 721 (https://doi.org/10.1016/0013-4686(68)85007-8)

C. Amatore, J. M. Saveant, J. Electroanal. Chem. 85 (1977) 27 (https://doi.org/10.1016/S0022-0728(77)80150-2)

R. S. Nicholson, I. Shain, Anal. Chem. 37 (1965) 178 (https://doi.org/10.1021/ac60221a002)

M. A. Mann, J. C. Helfrick Jr, L. A. Bottomley, J. Electrochem. Soc. 163 (2016) H3101 (http://dx.doi.org/10.1149/2.0151604jes)

A. B. Miles, R. G. Compton, J. Electroanal. Chem. 499 (2001) 1 (https://doi.org/10.1016/S0022-0728(00)00460-5)

J. J. O'Dea, K. Wikiel, J. Osteryoung, J. Phys. Chem. 94 (1990) 3628 (https://doi.org/10.1021/j100372a049)

A. B. Miles, R. G. Compton, J. Phys. Chem., B 104 (2000) 5331 (https://doi.org/10.1021/jp0006882)

Š. Komorsky-Lovrić, M. Lovrić, To Chem. J. 2 (2019) 142 (http://purkh.com/index.php/tochem)

R. Gulaboski, V. Markovski, Zh. Jihe, J. Solid State Electrochem. 20 (2016) 3229 (https://doi.org/10.1007/s10008-016-3230-7)

E. Laborda, J. M. Gomez-Gil, A. Molina, Phys. Chem. Chem. Phys. 19 (2017) 16464 (https://doi.org/10.1039/c7cp02135f)

C. Batchelor-McAuley, Q. Li, S. M. Dapin, R. G. Compton, J. Phys. Chem., B 114 (2010) 4094 (https://doi.org/10.1021/jp1008187)

D. Menshykau, C. Batchelor-McAuley, R. G. Compton, J. Electroanal. Chem. 651 (2011) 118 (https://doi.org/10.1016/j.jelechem.2010.11.024)

G. J. Wilson, C. Y. Lin, R. D. Webster, J. Phys. Chem., B 110 (2006) 11540 (https://doi.org/10.1021/jp0604802)

H.Balslev, D. Britz, Acta Chem. Scand. 46 (1992) 949

R. Saravanakumar, P. Pirabaharan, L. Rajendran, Electrochim. Acta 313 (2019) 441 (https://doi.org/10.1016/j.electacta.2019.05.033)

X. Y. Liu, Y. P. Liu, Z. W. Wu, Thermal Sci. 26 (2022) 2459 (https://doi.org/10.2298/TSCI2203459L)

R. Umadevi, J. Visuvasam, K. Venugopal, L. Rajendran, 1st Int. Conf. Math. Tech. Appl. AIP Conf. Proc. 2277 (2020) 130013 (https://doi.org/10.1063/5.0025822)

M. Lovrić, Turk. J. Chem. 46 (2022) 1226 (https://doi.org/10.55730/1300-0527.3429)

J. Strutwolf, W. W. Schoeller, Electroanalysis 8 (1996) 1034 (https://doi.org/10.1002/elan.1140081111)

M. Lovrić, J. Serb. Chem. Soc. 53 (1988) 211.